HOTA: A Higher Order Metric for Evaluating Multi-object Tracking

被引:512
|
作者
Luiten, Jonathon [1 ]
Osep, Aljosa [2 ]
Dendorfer, Patrick [2 ]
Torr, Philip [3 ]
Geiger, Andreas [4 ,5 ]
Leal-Taixe, Laura [2 ]
Leibe, Bastian [1 ]
机构
[1] Rhein Westfal TH Aachen, Aachen, Germany
[2] Tech Univ Munich, Munich, Germany
[3] Univ Oxford, Oxford, England
[4] Max Planck Inst Intelligent Syst, Tubingen, Germany
[5] Univ Tubingen, Tubingen, Germany
基金
英国工程与自然科学研究理事会;
关键词
Multi-object tracking; Evaluation metrics; Visual tracking; PERFORMANCE-MEASURES; MULTITARGET; ALGORITHM; FILTERS; TARGET;
D O I
10.1007/s11263-020-01375-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-object tracking (MOT) has been notoriously difficult to evaluate. Previous metrics overemphasize the importance of either detection or association. To address this, we present a novel MOT evaluation metric, higher order tracking accuracy (HOTA), which explicitly balances the effect of performing accurate detection, association and localization into a single unified metric for comparing trackers. HOTA decomposes into a family of sub-metrics which are able to evaluate each of five basic error types separately, which enables clear analysis of tracking performance. We evaluate the effectiveness of HOTA on the MOTChallenge benchmark, and show that it is able to capture important aspects of MOT performance not previously taken into account by established metrics. Furthermore, we show HOTA scores better align with human visual evaluation of tracking performance.
引用
收藏
页码:548 / 578
页数:31
相关论文
共 50 条
  • [1] HOTA: A Higher Order Metric for Evaluating Multi-object Tracking
    Jonathon Luiten
    Aljos̆a Os̆ep
    Patrick Dendorfer
    Philip Torr
    Andreas Geiger
    Laura Leal-Taixé
    Bastian Leibe
    International Journal of Computer Vision, 2021, 129 : 548 - 578
  • [2] MOTCOM: The Multi-Object Tracking Dataset Complexity Metric
    Pedersen, Malte
    Haurum, Joakim Bruslund
    Dendorfer, Patrick
    Moeslund, Thomas B.
    COMPUTER VISION, ECCV 2022, PT VIII, 2022, 13668 : 20 - 37
  • [3] Fast Metric Multi-Object Vehicle Tracking for Dynamical Environment Comprehension
    Alencar, Francisco A. R.
    Massera Filho, Carlos
    Ridel, Daniela A.
    Wolf, Denis F.
    2015 12TH LATIN AMERICAN ROBOTICS SYMPOSIUM AND 2015 3RD BRAZILIAN SYMPOSIUM ON ROBOTICS (LARS-SBR), 2015, : 175 - 180
  • [4] Self-supervised multi-object tracking based on metric learning
    Feng, Xin
    Liu, Yan
    Yang, Hanzhi
    Jiao, Xiaoning
    Liu, Zhi
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (05) : 7077 - 7088
  • [5] Recurrent Metric Networks and Batch Multiple Hypothesis for Multi-Object Tracking
    Chen, Longtao
    Peng, Xiaojiang
    Ren, Mingwu
    IEEE ACCESS, 2019, 7 : 3093 - 3105
  • [6] Multi-object trajectory tracking
    Han, Mei
    Xu, Wei
    Tao, Hai
    Gong, Yihong
    MACHINE VISION AND APPLICATIONS, 2007, 18 (3-4) : 221 - 232
  • [7] Multi-object tracking in video
    Agbinya, JI
    Rees, D
    REAL-TIME IMAGING, 1999, 5 (05) : 295 - 304
  • [8] Referring Multi-Object Tracking
    Wu, Dongming
    Han, Wencheng
    Wang, Tiancai
    Dong, Xingping
    Zhang, Xiangyu
    Shen, Jianbing
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 14633 - 14642
  • [9] Multi-Object Tracking in the Dark
    Wang, Xinzhe
    Ma, Kang
    Liu, Qiankun
    Zou, Yunhao
    Fu, Ying
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 382 - 392
  • [10] Multi-object trajectory tracking
    Mei Han
    Wei Xu
    Hai Tao
    Yihong Gong
    Machine Vision and Applications, 2007, 18 : 221 - 232