Poisson sigma model with branes and hyperelliptic Riemann surfaces

被引:4
|
作者
Ferrario, Andrea [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词
D O I
10.1063/1.2982234
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the explicit form of the superpropagators in the presence of general boundary conditions (coisotropic branes) for the Poisson sigma model. This generalizes the results presented by Cattaneo and Felder ["A path integral approach to the Kontsevich quantization formula," Commun. Math. Phys. 212, 591 (2000)] and Cattaneo and Felder ["Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model," Lett. Math. Phys. 69, 157 (2004)] for Kontsevich's angle function [Kontsevich, M., "Deformation quantization of Poisson manifolds I," e-print arXiv: hep.th/0101170] used in the deformation quantization program of Poisson manifolds. The relevant superpropagators for n branes are defined as gauge fixed homotopy operators of a complex of differential forms on n sided polygons P(n) with particular "alternating" boundary conditions. In the presence of more than three branes we use first order Riemann theta functions with odd singular characteristics on the Jacobian variety of a hyperelliptic Riemann surface (canonical setting). In genus g the superpropagators present g zero mode contributions. (C) 2008 American Institute of Physics.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model
    Alberto S. Cattaneo
    Giovanni Felder
    Letters in Mathematical Physics, 2004, 69 : 157 - 175
  • [2] Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model
    Cattaneo, AS
    Felder, G
    LETTERS IN MATHEMATICAL PHYSICS, 2004, 69 (1) : 157 - 175
  • [3] CHARACTERIZATION OF HYPERELLIPTIC RIEMANN SURFACES
    TSANOV, VV
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1978, 31 (11): : 1381 - 1384
  • [4] Branes in Poisson sigma models
    Falceto, Fernando
    XVIII INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2010, 1260 : 67 - 78
  • [5] Poisson Reduction and Branes in Poisson–Sigma Models
    Iván Calvo
    Fernando Falceto
    Letters in Mathematical Physics, 2004, 70 : 231 - 247
  • [6] The Poisson sigma model on closed surfaces
    Bonechi, Francesco
    Cattaneo, Alberto S.
    Mnev, Pavel
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (01):
  • [7] The Poisson sigma model on closed surfaces
    Francesco Bonechi
    Alberto S. Cattaneo
    Pavel Mnev
    Journal of High Energy Physics, 2012
  • [8] Computational Approach to Hyperelliptic Riemann Surfaces
    Frauendiener, Joerg
    Klein, Christian
    LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (03) : 379 - 400
  • [9] Geometric characterization of hyperelliptic Riemann surfaces
    Schaller, PS
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2000, 25 (01) : 85 - 90
  • [10] Gaussian curvature on hyperelliptic Riemann surfaces
    ABEL CASTORENA
    Proceedings - Mathematical Sciences, 2014, 124 : 155 - 167