Impurity transport and divertor retention in Ar and N seeded SOLPS 5.0 simulations for ASDEX Upgrade

被引:32
|
作者
Hitzler, F. [1 ,2 ]
Wischmeier, M. [1 ]
Reimold, F. [3 ]
Coster, D. P. [1 ]
机构
[1] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[2] Tech Univ Munich, Phys Dept E28, D-85747 Garching, Germany
[3] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany
关键词
tokamak; SOLPS simulation; impurity seeding; impurity transport; divertor retention; MODE PLASMA; EDGE; RADIATION; JET; BEHAVIOR; TUNGSTEN; DENSITY; PHYSICS; DRIFTS; POWER;
D O I
10.1088/1361-6587/ab9b00
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Impurity seeding will be an important tool to reduce the peak power loads and temperatures at the divertor targets in future tokamak devices. To improve the physics understanding and provide predictive capabilities for the impact of impurities on the plasma, different impurity species have to be investigated and compared to each other. For this purpose SOLPS 5.0 simulations of argon (Ar) and nitrogen (N) seeded H-mode plasmas for ASDEX Upgrade have been performed. The (purely numerical) investigations extend previous studies dedicated to impurity transport and to the divertor impurity retention. An analysis of mixed Ar and N impurity seeding reveals that a trade-off between pedestal top temperature drop and fuel dilution can be achieved by an adjustment of the impurity mixture. Due to the impact of the impurities on the temperatures, the impurity seeding reduces the main ion ionization rates in the divertor regions, and therefore, the ion particle sources. Accordingly, this modification of the particle sources results in a main ion background flow inversion at higher seeding levels, which also strongly affects the impurity flow patterns. This mechanism explains a modification of the impurity density distribution at higher seeding levels, where Ar impurities are observed to be redistributed from the outer to the inner divertor. A less pronounced effect is observed for N, which can be explained by the radiation efficiency. The divertor impurity retention is determined by the relative positions of the ionization front of the neutral impurities and the impurity stagnation point. The impact of impurity seeding on the stagnation point position is studied in detail for the first time. Under the investigated conditions, decreasing the target temperature (i.e. increasing impurity seeding) always results in a reduction of the divertor impurity retention. This is a critical result making power exhaust even more challenging.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] SOLPS-ITER modeling of Ar and N seeded discharges in ASDEX upgrade and ITER
    Senichenkov, I. Yu.
    Poletaeva, A. G.
    Kaveeva, E. G.
    Veselova, I. Yu.
    Rozhansky, V. A.
    Coster, D.
    Bonnin, X.
    Pitts, R. A.
    NUCLEAR MATERIALS AND ENERGY, 2023, 34
  • [2] SOLPS simulations of detachment in a snowflake configuration for the future upper divertor in ASDEX Upgrade
    Pan, O.
    Lunt, T.
    Wischmeier, M.
    Coster, D.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (08)
  • [3] Comparison of SOLPS5.0 and SOLPS-ITER simulations for ASDEX upgrade L-mode
    Wu, H.
    Subba, F.
    Wischmeier, M.
    Zanino, R.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2020, 60 (04)
  • [4] SOLPS 5.0 simulations of the high-field side divertor detachment of L-mode plasmas in ASDEX upgrade with convection-dominated radial SOL transport
    Karhunen, J.
    Groth, M.
    Coster, D. P.
    Carralero, D.
    Guimarais, L.
    Nikolaeva, V
    Potzel, S.
    Phtterich, T.
    Reimold, F.
    Scarabosio, A.
    Viezzer, E.
    Wischmeier, M.
    NUCLEAR MATERIALS AND ENERGY, 2019, 19 : 279 - 286
  • [5] SOLPS-ITER simulations of the TCV divertor upgrade
    Wensing, M.
    Duval, B. P.
    Fevrier, O.
    Fil, A.
    Galassi, D.
    Havlickova, E.
    Perek, A.
    Reimerdes, H.
    Theiler, C.
    Verhaegh, K.
    Wischmeier, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (08)
  • [6] SOLPS-ITER modeling with activated drifts for a snowflake divertor in ASDEX Upgrade
    Pan, O.
    Lunt, T.
    Wischmeier, M.
    Coster, D.
    Stroth, U.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (04)
  • [7] Assessment of SOLPS5.0 divertor solutions with drifts and currents against L-mode experiments in ASDEX Upgrade and JET
    Aho-Mantila, L.
    Potzel, S.
    Coster, D. P.
    Wischmeier, M.
    Brix, M.
    Fischer, R.
    Marsen, S.
    Meigs, A.
    Mueller, H. W.
    Scarabosio, A.
    Stamp, M. F.
    Brezinsek, S.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (03)
  • [8] Comparison between measured divertor parameters in ASDEX Upgrade and SOLPS code solutions
    Chankin, A. V.
    Coster, D. P.
    Dux, R.
    Fuchs, Ch.
    Haas, G.
    Herrmann, A.
    Horton, L. D.
    Kallenbach, A.
    Kaufmann, M.
    Kukushkin, A. S.
    Lackner, K.
    Mueller, H. W.
    Neuhauser, J.
    Pugno, R.
    Tsalas, M.
    JOURNAL OF NUCLEAR MATERIALS, 2007, 363 (335-340) : 335 - 340
  • [9] Divertor detachment and reattachment with mixed impurity seeding on ASDEX Upgrade
    Henderson, S. S.
    Bernert, M.
    Brida, D.
    Cavedon, M.
    David, P.
    Dux, R.
    Fevrier, O.
    Jarvinen, A.
    Kallenbach, A.
    Komm, M.
    McDermott, R.
    O'Mullane, M.
    NUCLEAR FUSION, 2023, 63 (08)
  • [10] Modelling of radiation distribution and impurity divertor compression in ASDEX upgrade
    Schneider, R
    Coster, DP
    Borrass, K
    Bosch, HS
    Neuhauser, J
    Lackner, K
    Kaufmann, M
    Kallenbach, A
    Behringer, K
    Büchl, K
    Dux, R
    Fuchs, C
    Haas, G
    Herrmann, A
    Mast, F
    Schweinzer, J
    Tsois, N
    Braams, BJ
    Reiter, D
    FUSION ENERGY 1996, VOL 2, 1997, : 465 - 476