Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic applications: A wet-chemical approach

被引:78
|
作者
Wang, Chenbo [1 ]
Jiang, Zifei [1 ]
Wei, Lin [2 ]
Chen, Yanxue [1 ]
Jiao, Jun [3 ]
Eastman, Micah [3 ]
Liu, Hong [1 ]
机构
[1] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[2] Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Peoples R China
[3] Portland State Univ, Dept Phys, Portland, OR 97207 USA
基金
中国国家自然科学基金;
关键词
QDSSC; TiO2; CdS; Wet-chemical; Nanorod; MULTIPLE EXCITON GENERATION; SOLAR-CELLS; EFFICIENCY; SIZE; NANOSTRUCTURES; NANOPARTICLES; NANOCRYSTALS; GROWTH;
D O I
10.1016/j.nanoen.2012.02.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We combine CdS semiconductor quantum dots and single-crystalline rutile TiO2 nanorod arrays to produce a practical quantum dot sensitized solar cell. A facile wet-chemical approach was implemented for growth of this CdS@TiO2 architecture. Rutile TiO2 nanorod arrays with lengths of 1-2 mu m and diameters of 40-60 nm were synthesized on fluorine-doped tin oxide glass by a hydrothermal process in a titanium tetrachloride precursor solution. CdS quantum dots with a size of 5-10 nm were deposited onto a TiO2 nanorod surface using an ultrasonic-assisted chemical bath deposition method. The resulting CdS quantum dots and TiO2 nanorods formed a type-II heterojunction and showed increased absorption over visible light range. Incident photon-to-current conversion efficiencies (IPCE) as high as 85% and power conversion efficiencies of 2.54% were obtained using a polysulfide electrolyte. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:440 / 447
页数:8
相关论文
共 50 条
  • [1] Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic devices
    Chen, Hui
    Fu, Wuyou
    Yang, Haibin
    Sun, Peng
    Zhang, Yanyan
    Wang, Lianru
    Zhao, Wenyan
    Zhou, Xiaoming
    Zhao, Hui
    Jing, Qiang
    Qi, Xuefeng
    Li, Yixing
    ELECTROCHIMICA ACTA, 2010, 56 (02) : 919 - 924
  • [2] Synthesis of TiO2 nanorods using wet chemical method and their photovoltaic and humidity sensing applications
    Chaurasiya N.
    Kumar U.
    Sikarwar S.
    Yadav B.C.
    Yadawa P.K.
    Sensors International, 2021, 2
  • [3] Wet-Chemical Synthesis of TiO2/PVDF Membrane for Energy Applications
    Saleem, Muhammad
    Albaqami, Munirah D.
    Bahajjaj, Aboud Ahmed Awadh
    Ahmed, Fahim
    Din, ElSayed
    Ul Arifeen, Waqas
    Ali, Shafaqat
    MOLECULES, 2023, 28 (01):
  • [4] Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots
    Peter, LM
    Riley, DJ
    Tull, EJ
    Wijayantha, KGU
    CHEMICAL COMMUNICATIONS, 2002, (10) : 1030 - 1031
  • [5] Electrospun TiO2 nanorods assembly sensitized by CdS quantum dots: a low-cost photovoltaic material
    Yang Shengyuan
    Nair, A. Sreekumaran
    Jose, Rajan
    Ramakrishna, Seeram
    ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (12) : 2010 - 2014
  • [6] Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures
    Baker, David R.
    Kamat, Prashant V.
    ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (05) : 805 - 811
  • [7] Photovoltaic and Impedance Spectroscopy of CdS Quantum Dots Onto Nano Urchin TiO2 Structure for Quantum Dots Sensitized Solar Cell Applications
    Ali, Syed Mansoor
    Aslam, M.
    Farooq, W. A.
    Fatehmulla, Amanullah
    Atif, M.
    Yakuphanoglu, F.
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2016, 11 (03) : 363 - 367
  • [8] Photosensitization of nanoporous TiO2 electrodes with InP quantum dots
    Zaban, A
    Micic, OI
    Gregg, BA
    Nozik, AJ
    LANGMUIR, 1998, 14 (12) : 3153 - 3156
  • [9] Photosensitization of nanoporous TiO2 electrodes with InP quantum dots
    Natl Renewable Energy Lab, Golden, United States
    Langmuir, 12 (3153-3156):
  • [10] CdS Quantum Dots and Dye Co-Sensitized Nanorods TiO2 Solar Cell
    Wageh, S.
    Al-Ghamdi, Ahmed A.
    Soylu, M.
    Al-Turki, Yusuf
    Al-Senany, Norah
    Yakuphanoglu, F.
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2014, 9 (05) : 662 - 665