Improving Classification of EEG signals for a Four-state Brain Machine Interface

被引:0
|
作者
Hema, C. R. [1 ]
Paulraj, M. P. [2 ]
Adom, A. H. [2 ]
机构
[1] Karpagam Univ, Fac Engn, Coimbatore, Tamil Nadu, India
[2] Univ Malaysia Perlis, Sch Mech Engn, Perlis, Malaysia
关键词
Brain Machine Interfaces; Dynamic Neural Networks; Parseval theorem; Band Power; Neural Networks; COMPUTER INTERFACES; NEURAL-NETWORK; COMMUNICATION; RECOGNITION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Neural network classifiers are one among the popular modes in the design of classifiers for electroencephalograph based brain machine interfaces. This study presents algorithms to improve the classification performance of motor imagery for a four state brain machine interface. Dynamic neural network models with band power and Parseval energy density features are proposed to improve the classification of task signals. Motor imagery signals recorded noninvasively at the sensorimotor cortex region using two bipolar electrodes are used in the study. The performances of the proposed algorithms are compared with a static neural classifier. Average classification performance of 97.7% was achievable. Experiment results show that the distributed time delay neural network model out performs the layered recurrent and feed forward neural classifiers.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Improving Classification Accuracy of EEG Based Brain Computer Interface Signals
    Aydemir, Onder
    [J]. 2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 176 - 179
  • [2] SVM Classification of EEG Signals for Brain Computer Interface
    Costantini, G.
    Todisco, M.
    Casali, D.
    Carota, M.
    Saggio, G.
    Bianchi, L.
    Abbafati, M.
    Quitadamo, L.
    [J]. NEURAL NETS WIRN09, 2009, 204 : 229 - 233
  • [3] Single Trial Motor Imagery Classification for a Four State Brain Machine Interface
    Hema, C. R.
    Paulraj, M. P.
    Yaacob, S.
    Adom, A. H.
    Nagarajan, R.
    [J]. CSPA: 2009 5TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, PROCEEDINGS, 2009, : 39 - 41
  • [4] Mu and Beta EEG Rhythm Based Design of a Four State Brain Machine Interface for a Wheelchair
    Hema, C. R.
    Paulraj, M. P.
    Yaacob, S.
    Hamid, A. H.
    Nagarajan, R.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, COMMUNICATION AND ENERGY CONSERVATION INCACEC 2009 VOL 1, 2009, : 401 - 404
  • [5] CLASSIFICATION OF DENSITY MATRICES FOR A FOUR-STATE SYSTEM
    Mendas, Istok
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (01) : 323 - 348
  • [6] Classification of Four Categories of EEG Signals Based on Relevance Vector Machine
    Dong, Enzeng
    Zhu, Guangxu
    Chen, Chao
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2017, : 1024 - 1029
  • [7] A Study on Mental State Classification using EEG-based Brain-Machine Interface
    Bird, Jordan J.
    Manso, Luis J.
    Ribeiro, Eduardo P.
    Ekart, Aniko
    Faria, Diego R.
    [J]. 2018 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS (IS), 2018, : 795 - 800
  • [8] Classification of EEG signals in the ambiguity domain for brain computer interface applications
    Garcia, G
    Ebrahimi, T
    Vesin, JM
    [J]. DSP 2002: 14TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2, 2002, : 301 - 305
  • [9] Fuzzy based classification of EEG mental tasks for a brain machine interface
    Hema, C. R.
    Paulraj, M. P.
    Nagarajan, R.
    Yaacob, Sazah
    Adom, Abd. Hamid
    [J]. 2007 THIRD INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, VOL 1, PROCEEDINGS, 2007, : 53 - 56
  • [10] A classification of four-state spin edge Potts models
    d'Auriac, JCA
    Maillard, JM
    Viallet, CM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (44): : 9251 - 9272