Large-Eddy Simulation of Atmospheric Boundary-Layer Flow Over Fluvial-Like Landscapes Using a Dynamic Roughness Model

被引:26
|
作者
Anderson, William [4 ]
Passalacqua, Paola [3 ]
Porte-Agel, Fernando [2 ]
Meneveau, Charles [1 ]
机构
[1] Johns Hopkins Univ, Dept Mech Engn, Ctr Environm & Appl Fluid Dynam, Baltimore, MD 21218 USA
[2] Swiss Fed Inst Technol, Sch Architecture Civil & Environm Engn, CH-1015 Lausanne, Switzerland
[3] Univ Texas Austin, Dept Civil Architectural & Environm Engn, Austin, TX 78712 USA
[4] Baylor Univ, Dept Mech Engn, Waco, TX 76798 USA
基金
美国国家科学基金会;
关键词
Atmospheric boundary layer; Dynamic roughness model; Evolved fluvial-like topography; TURBULENT-FLOW; MEAN-FLOW; MULTISCALE; SMOOTH; LENGTH;
D O I
10.1007/s10546-012-9722-9
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A recently developed dynamic surface roughness model (Anderson and Meneveau, J Fluid Mech 679:288-314, 2011) for large-eddy simulation (LES) of atmospheric boundary-layer flow over multi-scale topographies is applied to boundary-layer flow over several types of fluvial-like landscapes. The landscapes are generated numerically with simulation of a modified Kardar-Parisi-Zhang equation (Passalacqua et al., Water Resour Res 42:WOD611, 2006). These surfaces possess the fractal-like channel network and anisotropic features often found in real terrains. The dynamic model is shown to lead to accurate flow predictions when the surface-height distributions exhibit power-law scaling (scale invariance) in the prevalent mean flow direction. In those cases, the LES provide accurate predictions (invariant to resolution) of mean velocity profiles. Conversely, some resolution dependence is found for applications in which the landscape's streamwise spectra do not exhibit pure power-law scaling near wavenumbers corresponding to the LES grid resolution.
引用
收藏
页码:263 / 286
页数:24
相关论文
共 50 条
  • [1] Large-Eddy Simulation of Atmospheric Boundary-Layer Flow Over Fluvial-Like Landscapes Using a Dynamic Roughness Model
    William Anderson
    Paola Passalacqua
    Fernando Porté-Agel
    Charles Meneveau
    Boundary-Layer Meteorology, 2012, 144 : 263 - 286
  • [2] A new boundary condition for large-eddy simulation of boundary-layer flow over surface roughness transitions
    Abkar, Mahdi
    Porte-Agel, Fernando
    JOURNAL OF TURBULENCE, 2012, 13 (23): : 1 - 18
  • [4] Large-Eddy Simulation of Thermally Stratified Atmospheric Boundary-Layer Flow Using a Minimum Dissipation Model
    Mahdi Abkar
    Parviz Moin
    Boundary-Layer Meteorology, 2017, 165 : 405 - 419
  • [5] Large-Eddy Simulation of Thermally Stratified Atmospheric Boundary-Layer Flow Using a Minimum Dissipation Model
    Abkar, Mahdi
    Moin, Parviz
    BOUNDARY-LAYER METEOROLOGY, 2017, 165 (03) : 405 - 419
  • [6] A Large-Eddy Simulation Model for Boundary-Layer Flow Over Surfaces with Horizontally Resolved but Vertically Unresolved Roughness Elements
    William Anderson
    Charles Meneveau
    Boundary-Layer Meteorology, 2010, 137 : 397 - 415
  • [7] A Large-Eddy Simulation Model for Boundary-Layer Flow Over Surfaces with Horizontally Resolved but Vertically Unresolved Roughness Elements
    Anderson, William
    Meneveau, Charles
    BOUNDARY-LAYER METEOROLOGY, 2010, 137 (03) : 397 - 415
  • [8] LARGE-EDDY SIMULATION OF THE STABLY-STRATIFIED ATMOSPHERIC BOUNDARY-LAYER
    MASON, PJ
    DERBYSHIRE, SH
    BOUNDARY-LAYER METEOROLOGY, 1990, 53 (1-2) : 117 - 162
  • [9] Large-Eddy Simulation of the Atmospheric Boundary Layer
    Rob Stoll
    Jeremy A. Gibbs
    Scott T. Salesky
    William Anderson
    Marc Calaf
    Boundary-Layer Meteorology, 2020, 177 : 541 - 581
  • [10] Large-Eddy Simulation of the Atmospheric Boundary Layer
    Stoll, Rob
    Gibbs, Jeremy A.
    Salesky, Scott T.
    Anderson, William
    Calaf, Marc
    BOUNDARY-LAYER METEOROLOGY, 2020, 177 (2-3) : 541 - 581