We compute the entanglement entropy of a wide class of models that may be characterized as describing matter coupled to gauge fields. Our principle result is an entanglement sum rule that states that the entropy of the full system is the sum of the entropies of the two components. In the context of the models we consider, this result applies to the full entropy, but more generally it is a statement about the additivity of universal terms in the entropy. Our proof simultaneously extends and simplifies previous arguments, with extensions including new models at zero temperature as well as the ability to treat finite temperature crossovers. We emphasize that while the additivity is an exact statement, each term in the sum may still be difficult to compute. Our results apply to a wide variety of phases including Fermi liquids, spin liquids, and some non-Fermi liquid metals. For example, we prove that our model of an interacting Fermi liquid has exactly the log violation of the area law for entanglement entropy predicted by the Widom formula in agreement with earlier arguments.