An optimized photon pair source for quantum circuits

被引:128
|
作者
Harder, Georg [1 ]
Ansari, Vahid [1 ]
Brecht, Benjamin [1 ]
Dirmeier, Thomas [2 ,3 ]
Marquardt, Christoph [2 ,3 ]
Silberhorn, Christine [1 ,2 ]
机构
[1] Univ Paderborn, D-33098 Paderborn, Germany
[2] Max Planck Inst Sci Light, D-91058 Erlangen, Germany
[3] Univ Erlangen Nurnberg, Inst Opt Informat & Photon, D-91058 Erlangen, Germany
来源
OPTICS EXPRESS | 2013年 / 21卷 / 12期
关键词
SINGLE PHOTONS; TELECOM-BAND; STATES; ENTANGLEMENT; GENERATION; BRIGHTNESS;
D O I
10.1364/OE.21.013975
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We implement an ultrafast pulsed type-II parametric down conversion source in a periodically poled KTP waveguide at telecommunication wavelengths with almost identical properties between signal and idler. As such, our source resembles closely a pure, genuine single mode photon pair source with indistinguishable modes. We measure the joint spectral intensity distribution and second order correlation functions of the marginal beams and find with both methods very low effective mode numbers corresponding to a Schmidt number below 1.16. We further demonstrate the indistinguishability as well as the purity of signal and idler photons by Hong-Ou-Mandel interferences between signal and idler and between signal/idler and a coherent field, respectively. Without using narrowband spectral filtering, we achieve a visibility for the interference between signal and idler of 94.8% and determine a purity of more than 80% for the heralded single photon states. Moreover, we measure raw heralding efficiencies of 20.5% and 15.5% for the signal and idler beams corresponding to detector-loss corrected values of 80% and 70%. (C) 2013 Optical Society of America
引用
收藏
页码:13975 / 13985
页数:11
相关论文
共 50 条
  • [1] Narrowband photon pair source for quantum networks
    Monteiro, F.
    Martin, A.
    Sanguinetti, B.
    Zbinden, H.
    Thew, R. T.
    OPTICS EXPRESS, 2014, 22 (04): : 4371 - 4378
  • [2] High coherence photon pair source for quantum communication
    Halder, Matthaeus
    Beveratos, Alexios
    Thew, Robert T.
    Jorel, Corentin
    Zbinden, Hugo
    Gisin, Nicolas
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [3] Deterministic separation of arbitrary photon pair states in integrated quantum circuits
    Marchildon, Ryan P.
    Helmy, Amr S.
    LASER & PHOTONICS REVIEWS, 2016, 10 (02) : 245 - 256
  • [4] Photon pair source via two coupling single quantum emitters
    Peng Yong-Gang
    Zheng Yu-Jun
    CHINESE PHYSICS B, 2015, 24 (10)
  • [5] Fully guided-wave photon pair source for quantum applications
    Vergyris, P.
    Kaiser, F.
    Gouzien, E.
    Sauder, G.
    Lunghi, T.
    Tanzilli, S.
    QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (02):
  • [6] Photon pair source via two coupling single quantum emitters
    彭勇刚
    郑雨军
    Chinese Physics B, 2015, 24 (10) : 222 - 226
  • [7] Performance of hybrid entanglement photon pair source for quantum key distribution
    Fujiwara, M.
    Toyoshima, M.
    Sasaki, M.
    Yoshino, K.
    Nambu, Y.
    Tomita, A.
    APPLIED PHYSICS LETTERS, 2009, 95 (26)
  • [8] All-fiber photon-pair source for quantum communications
    Fiorentino, M
    Voss, PL
    Sharping, JE
    Kumar, P
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2002, 14 (07) : 983 - 985
  • [9] Programmable photon pair source
    Cui, Liang
    Wang, Jinjin
    Li, Jiamin
    Ma, Mingyi
    Ou, Z. Y.
    Li, Xiaoying
    APL PHOTONICS, 2022, 7 (01)
  • [10] Source-independent quantum secret sharing with entangled photon pair networks
    Xiao, Yi-Ran
    Jia, Zhao-Ying
    Song, Yu-Chen
    Bao, Yu
    Fu, Yao
    Yin, Hua-Lei
    Chen, Zeng-Bing
    OPTICS LETTERS, 2024, 49 (15) : 4210 - 4213