Bifurcation method and traveling wave solution to Whitham-Broer-Kaup equation

被引:9
|
作者
Shen, JW [1 ]
Xu, W
Jin, YF
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
[2] Xuchang Univ, Dept Math, Xuchang 461000, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
solitary wave solution; kink and anti-kink wave solution; periodic wave solution; WBK equations; bifurcation theory; dynamical systems;
D O I
10.1016/j.amc.2005.01.078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using bifurcation method to Whitham-Broer-Kaup shallow water equations, bifurcation parameter sets are shown. Numbers of solitary waves, kink waves and periodic waves are given. Under various parameter conditions, all explicit formulas of solitary wave solutions, kink wave solutions and periodic wave solutions are listed. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:677 / 702
页数:26
相关论文
共 50 条
  • [1] Evolutions of Wave Patterns in Whitham-Broer-Kaup Equation
    Zhang Zheng-Di
    Bi Qin-Sheng
    CHINESE PHYSICS LETTERS, 2009, 26 (01)
  • [2] Shape analysis of bounded traveling wave solutions and solution to the generalized Whitham-Broer-Kaup equation with dissipation terms
    Weiguo Zhang
    Qiang Liu
    Xiang Li
    Boling Guo
    Chinese Annals of Mathematics, Series B, 2012, 33 : 281 - 308
  • [3] Exact and numerical traveling wave solutions of Whitham-Broer-Kaup equations
    El-Sayed, SM
    Kaya, D
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 167 (02) : 1339 - 1349
  • [4] Shape Analysis of Bounded Traveling Wave Solutions and Solution to the Generalized Whitham-Broer-Kaup Equation with Dissipation Terms
    Weiguo ZHANG 1 Qiang LIU 2 Xiang LI 3 Boling GUO 4 1 Corresponding author.School of Science
    Department of Mathematics and Information Science
    Chinese Annals of Mathematics,Series B, 2012, 33 (02) : 281 - 308
  • [5] Shape analysis of bounded traveling wave solutions and solution to the generalized Whitham-Broer-Kaup equation with dissipation terms
    Zhang, Weiguo
    Liu, Qiang
    Li, Xiang
    Guo, Boling
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2012, 33 (02) : 281 - 308
  • [6] Numerical treatment for traveling wave solutions of fractional Whitham-Broer-Kaup equations
    Ali, Amjad
    Shah, Kamal
    Khan, Rahmat Ali
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (03) : 1991 - 1998
  • [7] Approximate traveling wave solutions for coupled Whitham-Broer-Kaup shallow water
    Ganji, D. D.
    Rokni, Houman B.
    Sfahani, M. G.
    Ganji, S. S.
    ADVANCES IN ENGINEERING SOFTWARE, 2010, 41 (7-8) : 956 - 961
  • [8] A generalized method and general form solutions to the Whitham-Broer-Kaup equation
    Chen, Y
    Wang, Q
    Li, BA
    CHAOS SOLITONS & FRACTALS, 2004, 22 (03) : 675 - 682
  • [9] EXACT SOLUTION OF WHITHAM-BROER-KAUP SHALLOW WATER WAVE EQUATIONS
    Ahmad, Jamshad
    Mushtaq, Mariyam
    Sajjad, Nadeem
    JOURNAL OF SCIENCE AND ARTS, 2015, (01): : 5 - 12
  • [10] ON THE NUMERICAL SOLUTION OF WHITHAM-BROER-KAUP SHALLOW WATER WAVE EQUATIONS
    Olayiwola, Morufu Oyedunsi
    JOURNAL OF SCIENCE AND ARTS, 2016, (04): : 337 - 344