A generalized harmonic function perturbation method for determining limit cycles and homoclinic orbits of Helmholtz-Duffing oscillator

被引:21
|
作者
Li, Zhenbo [1 ]
Tang, Jiashi [1 ]
Cai, Ping [1 ]
机构
[1] Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
QUADRATIC NONLINEAR OSCILLATORS; PERIODIC-SOLUTIONS;
D O I
10.1016/j.jsv.2013.05.007
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, a novel description of periodic solution and homoclinic orbit of undamped Helmholtz-Duffing oscillator is proposed via nonlinear time transformation. Based on this novel description, a generalized harmonic function perturbation method is presented to determine the limit cycles and homoclinic orbits of Helmholtz-Duffing oscillator with nonlinear damping. The amplitude of limit cycle and critical value of the homoclinic bifurcation parameter can be also predicted. To illustrate the accuracy of the present method, the solutions obtained in this paper are compared with those of Runge-Kutta method, which shows the method proposed in this paper is effective and feasible. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5508 / 5522
页数:15
相关论文
共 16 条
  • [1] Global residue harmonic balance method for Helmholtz-Duffing oscillator
    Ju, Peijun
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (08) : 2172 - 2179
  • [2] Couple of the Harmonic Balance Method and Gamma Function for the Helmholtz-Duffing Oscillator with Small Amplitude
    Wu, Pinxia
    He, Jihuan
    Jiao, Manli
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2023, 11 (05) : 2193 - 2198
  • [3] The iterative homotopy harmonic balance method for conservative Helmholtz-Duffing oscillators
    Guo, Zhongjin
    Leung, A. Y. T.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (09) : 3163 - 3169
  • [4] A modified generalized harmonic function perturbation method and its application in analyzing generalized Duffing-Harmonic-Rayleigh-Liénard oscillator
    Li, Zhenbo
    Cai, Jin
    Hou, Linxia
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2024, 166
  • [5] Couple of the Harmonic Balance Method and Gamma Function for the Helmholtz–Duffing Oscillator with Small Amplitude
    Pinxia Wu
    Jihuan He
    Manli Jiao
    Journal of Vibration Engineering & Technologies, 2023, 11 : 2193 - 2198
  • [6] Influence of harmonic and bounded noise excitations on chaotic motion of Duffing oscillator with homoclinic and heteroclinic orbits
    Yang, XL
    Xu, W
    Sun, ZK
    ACTA PHYSICA SINICA, 2006, 55 (04) : 1678 - 1686
  • [7] Predicting Homoclinic and Heteroclinic Bifurcation of Generalized Duffing-Harmonic-van de Pol Oscillator
    Zhenbo Li
    Jiashi Tang
    Ping Cai
    Qualitative Theory of Dynamical Systems, 2016, 15 : 19 - 37
  • [8] Predicting Homoclinic and Heteroclinic Bifurcation of Generalized Duffing-Harmonic-van de Pol Oscillator
    Li, Zhenbo
    Tang, Jiashi
    Cai, Ping
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2016, 15 (01) : 19 - 37
  • [9] Novel solutions to the (un)damped Helmholtz-Duffing oscillator and its application to plasma physics: Moving boundary method
    Salas, Alvaro H. S.
    El-Tantawy, S. A.
    Alharthi, M. R.
    PHYSICA SCRIPTA, 2021, 96 (10)
  • [10] Application of He's homotopy perturbation method to the Duffing-harmonic oscillator
    Belendez, A.
    Hernandez, A.
    Belendez, T.
    Fernandez, E.
    Alvarez, M. L.
    Neipp, C.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2007, 8 (01) : 79 - 88