Variance Component Estimation by the Method of Least-Squares

被引:0
|
作者
Teunissen, P. J. G. [1 ]
Amiri-Simkooei, A. R. [1 ]
机构
[1] Delft Univ Technol, Delf Inst Earth Observat & Space Syst DEOS, NL-2629 HS Delft, Netherlands
关键词
Least-squares variance component estimation; BIQUE; MINQUE; REML;
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Motivated by the fact that the method of least-squares is one of the leading principles in parameter estimation, we introduce and develop the method of least-squares variance component estimation (LS-VCE). The results are presented both for the model of observation equations and for the model of condition equations. LS-VCE has many attractive features. It provides a unified least-squares framework for estimating the unknown parameters of both the functional and stochastic model. Also, our existing body of knowledge of least-squares theory is directly applicable to LS-VCE. LS-VCE has a similar insightful geometric interpretation as standard least-squares. Properties of the normal equations, estimability, orthogonal projectors, precision of estimators, nonlinearity, and prior information on VCE can be easily established. Also measures of inconsistency, such as the quadratic form of residuals and the w-test statistic can directly be given. This will lead us to apply hypotheses testing to the stochastic model.
引用
收藏
页码:273 / 279
页数:7
相关论文
共 50 条
  • [1] Least-squares variance component estimation
    Teunissen, P. J. G.
    Amiri-Simkooei, A. R.
    [J]. JOURNAL OF GEODESY, 2008, 82 (02) : 65 - 82
  • [2] Least-squares variance component estimation
    P. J. G. Teunissen
    A. R. Amiri-Simkooei
    [J]. Journal of Geodesy, 2008, 82 : 65 - 82
  • [3] Weighted least-squares fitting of circles with variance component estimation
    Fang, Xing
    Hu, Yu
    Zeng, Wenxian
    Akyilmaz, O.
    [J]. MEASUREMENT, 2022, 205
  • [4] Application of Least-Squares Variance Component Estimation to GPS Observables
    Amiri-Simkooei, A. R.
    Teunissen, P. J. G.
    Tiberius, C. C. J. M.
    [J]. JOURNAL OF SURVEYING ENGINEERING, 2009, 135 (04) : 149 - 160
  • [5] Combination of GNSS orbits using least-squares variance component estimation
    Gustavo Mansur
    Pierre Sakic
    Andreas Brack
    Benjamin Männel
    Harald Schuh
    [J]. Journal of Geodesy, 2022, 96
  • [6] Combination of GNSS orbits using least-squares variance component estimation
    Mansur, Gustavo
    Sakic, Pierre
    Brack, Andreas
    Maennel, Benjamin
    Schuh, Harald
    [J]. JOURNAL OF GEODESY, 2022, 96 (11)
  • [7] Least-Squares Variance Component Estimation Applied to GPS Geometry-Based Observation Model
    Amiri-Simkooei, A. R.
    Zangeneh-Nejad, F.
    Asgari, J.
    [J]. JOURNAL OF SURVEYING ENGINEERING, 2013, 139 (04) : 176 - 187
  • [8] Nonlinear total least-squares variance component estimation for GM(1,1) model
    Leyang Wang
    Jianqiang Sun
    Qiwen Wu
    [J]. Geodesy and Geodynamics, 2021, 12 (03) : 211 - 217
  • [9] Locally weighted total least-squares variance component estimation for modeling urban air pollution
    Mokhtari, Arezoo
    Tashayo, Behnam
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2022, 194 (11)
  • [10] Non-negative least-squares variance component estimation with application to GPS time series
    Amiri-Simkooei, A. R.
    [J]. JOURNAL OF GEODESY, 2016, 90 (05) : 451 - 466