Bayesian non-parametrics and the probabilistic approach to modelling

被引:52
|
作者
Ghahramani, Zoubin [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
probabilistic modelling; Bayesian statistics; non-parametrics; machine learning; MULTIVARIATE STOCHASTIC VOLATILITY; MIXTURES;
D O I
10.1098/rsta.2011.0553
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Modelling is fundamental to many fields of science and engineering. A model can be thought of as a representation of possible data one could predict from a system. The probabilistic approach to modelling uses probability theory to express all aspects of uncertainty in the model. The probabilistic approach is synonymous with Bayesian modelling, which simply uses the rules of probability theory in order to make predictions, compare alternative models, and learn model parameters and structure from data. This simple and elegant framework is most powerful when coupled with flexible probabilistic models. Flexibility is achieved through the use of Bayesian non-parametrics. This article provides an overview of probabilistic modelling and an accessible survey of some of the main tools in Bayesian non-parametrics. The survey covers the use of Bayesian non-parametrics for modelling unknown functions, density estimation, clustering, time-series modelling, and representing sparsity, hierarchies, and covariance structure. More specifically, it gives brief nontechnical overviews of Gaussian processes, Dirichlet processes, infinite hidden Markov models, Indian buffet processes, Kingman's coalescent, Dirichlet diffusion trees andWishart processes.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Moment conditions and Bayesian non-parametrics
    Bornn, Luke
    Shephard, Neil
    Solgi, Reza
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2019, 81 (01) : 5 - 43
  • [2] Gene regulation meets Bayesian non-parametrics
    Sandeep Choubey
    [J]. Nature Computational Science, 2023, 3 : 126 - 127
  • [3] Gene regulation meets Bayesian non-parametrics
    Choubey, Sandeep
    [J]. NATURE COMPUTATIONAL SCIENCE, 2023, 3 (02): : 126 - 127
  • [4] Compound random measures and their use in Bayesian non-parametrics
    Griffin, Jim E.
    Leisen, Fabrizio
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (02) : 525 - 545
  • [5] Deep Siamese Networks with Bayesian Non-parametrics for Video Object Tracking
    Rhodes, Anthony D.
    Goel, Manan
    [J]. PROCEEDINGS OF THE FUTURE TECHNOLOGIES CONFERENCE (FTC) 2019, VOL 2, 2020, 1070 : 950 - 958
  • [6] Accelerated non-parametrics for cascades of Poisson processes
    Oates, Chris J.
    [J]. STAT, 2015, 4 (01): : 183 - 195
  • [7] ROLE OF NON-PARAMETRICS IN INTRODUCTORY STATISTICS COURSES
    NOETHER, GE
    [J]. AMERICAN STATISTICIAN, 1980, 34 (01): : 22 - 23
  • [8] Gene expression model inference from snapshot RNA data using Bayesian non-parametrics
    Zeliha Kilic
    Max Schweiger
    Camille Moyer
    Douglas Shepherd
    Steve Pressé
    [J]. Nature Computational Science, 2023, 3 : 174 - 183
  • [9] Gene expression model inference from snapshot RNA data using Bayesian non-parametrics
    Kilic, Zeliha
    Schweiger, Max
    Moyer, Camille
    Shepherd, Douglas
    Presse, Steve
    [J]. NATURE COMPUTATIONAL SCIENCE, 2023, 3 (02): : 174 - +
  • [10] Using non-parametrics to inform parametric tests of Kuznets' hypothesis
    Mushinski, DW
    [J]. APPLIED ECONOMICS LETTERS, 2001, 8 (02) : 77 - 79