3D mass diffusivity model of liquid metals in the presence of a magnetic field

被引:2
|
作者
Khine, YY [1 ]
Banish, RM
机构
[1] Univ Alabama, Ctr Mat Res, Huntsville, AL 35899 USA
[2] Univ Alabama, Dept Chem & Mat Engn, Huntsville, AL 35899 USA
关键词
convection; magnetic fields; mass transfer; metals; semiconducting germanium;
D O I
10.1016/j.jcrysgro.2005.11.033
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The effect of convective contamination for mass diffusivity measurements of liquid germanium with moderate and strong magnetic fields is analyzed in three-dimensional (3D). A steady-state, 3D temperature profile that represents a heat flux at the sidewall varying as cos(theta) in the azimuthal direction is imposed on the cylinder. The temperature non-uniformity-driven convective contamination that leads to approximately 5% greater mass flux, or an allowable temperature non-uniforinity is determined for magnetic field strengths of 0.75 and 4.5 T. From the numerical results, the temperature non-uniformity that liquid germanium can tolerate is a tenth of a degree or less for all the cases. The velocities are directly proportional to the temperature non-uniformity in the liquid, with axial velocities usually an order of magnitude higher than the radial and azimuthal velocities. A stronger magnetic field can allow a larger temperature non-uniformity for the same heat transfer condition. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:287 / 290
页数:4
相关论文
共 50 条
  • [1] Effect of input diffusivity in an axisymmetric mass diffusivity model for liquid metals with an applied magnetic field
    Khine, Y. Y.
    Banish, R. M.
    INTERDISCIPLINARY TRANSPORT PHENOMENA IN THE SPACE SCIENCES, 2006, 1077 : 115 - 123
  • [2] 3D Manipulation of Magnetic Liquid Metals
    Zhou, Wenqing
    Liang, Qingxuan
    Chen, Tianning
    ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (10)
  • [3] Creating 3D printed magnetic devices with ferrofluids and liquid metals
    Lazarus, Nathan
    Bedair, Sarah S.
    Smith, Gabriel L.
    ADDITIVE MANUFACTURING, 2019, 26 : 15 - 21
  • [4] Mathematical Models of 3D Magnetic Field and 3D Positioning System by Magnetic Field
    Lin, Dong
    Chen, Xin
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (04): : 1647 - 1654
  • [5] Small oscillations of a 3D electric dipole in the presence of a uniform magnetic field
    del Pino, L. A.
    Atenas, B.
    Curilef, S.
    XIX CHILEAN PHYSICS SYMPOSIUM 2014, 2016, 720
  • [6] 3D numerical simulation of melt flow in the presence of a rotating magnetic field
    Vizman, D
    Fischer, B
    Friedrich, J
    Müller, G
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2000, 10 (04) : 366 - 384
  • [7] Magnetic properties of nanoparticles of 3d metals
    Frolov, G. I.
    Bachina, O. I.
    Zav'yalova, M. M.
    Ravochkin, S. I.
    TECHNICAL PHYSICS, 2008, 53 (08) : 1059 - 1064
  • [8] Magnetic properties of nanoparticles of 3d metals
    G. I. Frolov
    O. I. Bachina
    M. M. Zav’yalova
    S. I. Ravochkin
    Technical Physics, 2008, 53 : 1059 - 1064
  • [9] Thermodynamical Properties of 3d Transition Liquid Metals
    Thakor, P. B.
    Sonvane, Y. A.
    Jani, A. R.
    5TH INTERNATIONAL CONFERENCE ON THERMOPHYSICAL PROPERTIES, 2010, 1249 : 157 - +
  • [10] LIQUID STRUCTURE OF THE 3D TRANSITION-METALS
    BHUIYAN, GM
    BRETONNET, JL
    SILBERT, M
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1993, 156 (pt 1) : 145 - 148