Hybrid machine learning to improve predictive performance

被引:0
|
作者
Ha, Sung Ho [1 ]
Jin, Jong Sik [1 ]
Joo, Seong Hyeon [1 ]
机构
[1] Kyungpook Natl Univ, Sch Business Adm, 1370 Sangyeok Dong, Taegu, South Korea
关键词
hybrid machine learning; case-based reasoning; data mining prediction; feature weighting; SEMICONDUCTOR; PATTERNS; SYSTEM; YIELD;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Yield management in semiconductor manufacturing companies requires accurate yield prediction and continual control. This paper presents a hybrid method of combining machine learning techniques to detect high and low yields. In the real applications, the hybrid method provides more accurate yield prediction than other methods.
引用
收藏
页码:373 / +
页数:2
相关论文
共 50 条
  • [1] Can machine learning improve predictive performance of long-term outcomes for adults with breathlessness?
    Karsanji, Urvee
    Steiner, Michael C.
    Lawson, Claire A.
    Petherick, Emily
    Evans, Rachael A.
    Richardson, Matthew
    EUROPEAN RESPIRATORY JOURNAL, 2023, 62
  • [2] A hybrid numerical/machine learning model development to improve the bimetal performance in the electric circuit breakers
    Abdul Rahman Mallah
    Nawaf Aljuraid
    Omer A. Alawi
    Zaher Mundher Yaseen
    Kamaljeet Singh
    Adel Ataki
    Scientific Reports, 12
  • [3] A hybrid numerical/machine learning model development to improve the bimetal performance in the electric circuit breakers
    Mallah, Abdul Rahman
    Aljuraid, Nawaf
    Alawi, Omer A.
    Yaseen, Zaher Mundher
    Singh, Kamaljeet
    Ataki, Adel
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Machine learning for predictive electrical performance using OCD
    Das, Sayantan
    Hung, Joey
    Halder, Sandip
    Koret, Roy
    Turovets, Igor
    Saib, Mohamed
    Charley, Anne-Laure
    Sendelbach, Matthew
    Ger, Avron
    Leray, Philippe
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXXIII, 2019, 10959
  • [5] Machine Learning Techniques to Improve Predictive Models for Kidney Offer Acceptance
    Martinez, C.
    Nasir, M.
    Kshirsagar, M.
    Shean, R.
    Mccharen, K.
    Stuart, M.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2023, 23 (06) : S736 - S736
  • [6] MapReduce Tuning to Improve Distributed Machine Learning Performance
    Jeon, SungHwan
    Chung, Haejin
    Choi, Wonseok
    Shin, Heeseong
    Chun, Jonghoon
    Kim, Jin Taek
    Nah, Yunmook
    2018 IEEE FIRST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2018, : 198 - 200
  • [7] Hybrid and predictive admission strategies to improve the performance of an overloaded web server
    Cherkasova, Ludmila
    Phaal, Peter
    HP Laboratories Technical Report, 1999, (98-125 R.1):
  • [8] Hybrid interpretable predictive machine learning model for air pollution prediction
    Gu, Yuanlin
    Li, Baihua
    Meng, Qinggang
    NEUROCOMPUTING, 2022, 468 : 123 - 136
  • [9] Predictive Analysis of Medical Data using a Hybrid Machine Learning Technique
    Rajawat, Pushpendra Singh
    Gupta, Deepak Kumar
    Rathore, Santosh Singh
    Singh, Avtar
    2018 FIRST INTERNATIONAL CONFERENCE ON SECURE CYBER COMPUTING AND COMMUNICATIONS (ICSCCC 2018), 2018, : 228 - 233
  • [10] A Hybrid Machine Learning Approach for Predictive Maintenance in Smart Factories of the Future
    Cho, Sangje
    May, Gokan
    Tourkogiorgis, Ioannis
    Perez, Roberto
    Lazaro, Oscar
    de la Maza, Borja
    Kiritsis, Dimitris
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: SMART MANUFACTURING FOR INDUSTRY 4.0, APMS 2018, 2018, 536 : 311 - 317