Block bundle obstruction to Kervaire invariant one

被引:0
|
作者
Lam, Kee Yuen [1 ]
Randall, Duane [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Kervaire invariant; sphere-of-origin; block bundles;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
PL block bundle theory provides obstructions to the existence of Kervaire invariant one elements theta(j) in the stable stems pi(s)(k) for k = 2(j+1) -2. A fundamental theorem of Barratt-Jones-Mahowald with extensions by Minami and Knapp provides a lower bound for the sphere-of-origin of Kervaire invariant one elements. This lower bound is the sphere-of-origin for theta(4), theta(5), and also theta(6) if it exists. The existence of theta(j) is equivalent to the vanishing of a certain Whitehead product involving the Im J generator beta(j) for 4 <= j <= 6.
引用
下载
收藏
页码:163 / +
页数:3
相关论文
共 50 条
  • [1] On the nonexistence of elements of Kervaire invariant one
    Hill, M. A.
    Hopkins, M. J.
    Ravenel, D. C.
    ANNALS OF MATHEMATICS, 2016, 184 (01) : 1 - 262
  • [3] THE ARF-KERVAIRE INVARIANT OF FRAMED MANIFOLDS AS AN OBSTRUCTION TO EMBEDDABILITY
    Akhmetie, Pete
    Cencelj, Matija
    Repovs, Dusan D.
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2022, 100 (02): : 1 - 17
  • [4] THE KERVAIRE INVARIANT ONE ELEMENT AND THE DOUBLE TRANSFER
    MINAMI, N
    TOPOLOGY, 1995, 34 (02) : 481 - 488
  • [5] KERVAIRE OBSTRUCTION
    ROURKE, CP
    SULLIVAN, DP
    ANNALS OF MATHEMATICS, 1971, 94 (03) : 397 - &
  • [6] THE KERVAIRE INVARIANT OF IMMERSIONS
    COHEN, RL
    JONES, JDS
    MAHOWALD, ME
    INVENTIONES MATHEMATICAE, 1985, 79 (01) : 95 - 123
  • [7] GENERALIZATIONS OF KERVAIRE INVARIANT
    BROWN, EH
    ANNALS OF MATHEMATICS, 1972, 95 (02) : 368 - &
  • [8] THE KERVAIRE INVARIANT AND THE HOPF INVARIANT
    BARRATT, MG
    JONES, JDS
    MAHOWALD, ME
    LECTURE NOTES IN MATHEMATICS, 1987, 1286 : 135 - 173
  • [9] On the non-existence of elements of Kervaire invariant one
    Hill, Michael A.
    Hopkins, Michael J.
    Ravenel, Douglas C.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 1219 - 1243
  • [10] The nonmultiplicativity of the signature modulo 8 of a fibre bundle is an Arf-Kervaire invariant
    Rovi, Carmen
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (03): : 1281 - 1322