Representing and Tracking of Dynamics Objects using Oriented Bounding Box and Extended Kalman Filter.

被引:19
|
作者
Kmiotek, Pawel [1 ]
Ruichek, Yassine [1 ]
机构
[1] Univ Technol Belfort Montbeliard, Syst & Transportat Lab, Belfort, France
关键词
D O I
10.1109/ITSC.2008.4732695
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Representing and tracking of dynamics objects is one of the main parts of autonomous navigation in urban areas. In the framework of the development of a multiple objects tracking system using multisensor fusion, this paper presents an oriented bounding box (OBB) representation with uncertainty computation as well as a model for object tracking. The uncertainty computation method, which takes into account Laser Range Finder sensor uncertainty and object's relative position, is evaluated. The influence of this uncertainty on the accuracy of the estimation is shown. The tracking model, based on the Extended Kalman Filter is tested and evaluated using the OBB object's representation.
引用
收藏
页码:322 / 328
页数:7
相关论文
共 50 条
  • [1] STRUCTURAL IDENTIFICATION BY EXTENDED KALMAN FILTER.
    Hoshiya, Masaru
    Saito, Etsuro
    1757, (110):
  • [2] Identification of induction motor parameter using an Extended Kalman Filter.
    Jaramillo, R
    Alvarez, R
    Cárdenas, V
    Núñez, C
    2004 1st International Conference on Electrical and Electronics Engineering (ICEEE), 2004, : 584 - 588
  • [3] PASSIVE POSITION LOCATION ESTIMATION USING THE EXTENDED KALMAN FILTER.
    Spingarn, Karl
    IEEE Transactions on Aerospace and Electronic Systems, 1987, AES-23 (04) : 558 - 567
  • [4] A Box Particle Filter Method for Tracking Multiple Extended Objects
    De Freitas, Allan
    Mihaylova, Lyudmila
    Gning, Amadou
    Schikora, Marek
    Ulmke, Martin
    Angelova, Donka
    Koch, Wolfgang
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2019, 55 (04) : 1640 - 1655
  • [5] LASER GLINT TRACKING USING AN EXTENDED KALMAN FILTER
    DILLOW, JD
    LEWANTOWICZ, ZH
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1977, 13 (04) : 449 - 449
  • [6] MANEUVERING TARGET TRACKING USING EXTENDED KALMAN FILTER
    CORTINA, E
    OTERO, D
    DATTELLIS, CE
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1991, 27 (01) : 155 - 158
  • [7] EXTENDED KALMAN FILTER FOR EXTENDED OBJECT TRACKING
    Yang, Shishan
    Baum, Marcus
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4386 - 4390
  • [8] Tracking Objects through Occlusions Using Improved Kalman Filter
    Wang, Jin
    He, Fei
    Zhang, Xuejie
    Gao, Yun
    2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL (ICACC 2010), VOL. 5, 2010, : 223 - 228
  • [9] Multiple Objects Tracking Using Extended Kalman Filter, GMM and Mean Shift Algorithm - A comparative Study
    Santosh, D. Harihara
    Mohan, P. G. Krishna
    2014 INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES (ICACCCT), 2014, : 1484 - 1488
  • [10] Tracking refractivity from radar clutter using extended Kalman filter and unscented Kalman filter
    Zheng, Sheng
    ACTA PHYSICA SINICA, 2011, 60 (11)