共 6 条
Testing the accuracy of a Bayesian central-dose model for single-grain OSL, using known-age samples
被引:28
|作者:
Guerin, Guillaume
[1
]
Combes, Benoit
[1
]
Lahaye, Christelle
[1
]
Thomsen, Kristina J.
[2
]
Tribolo, Chantal
[1
]
Urbanova, Petra
[1
]
Guibert, Pierre
[1
]
Mercier, Norbert
[1
]
Valladas, Helene
[3
]
机构:
[1] Univ Bordeaux Montaigne, CNRS, IRAMAT CRP2A, Maison Archeol, F-33607 Pessac, France
[2] Tech Univ Denmark, Ctr Nucl Technol, DK-4000 Roskilde, Denmark
[3] UVSQ, CNRS, UMR CEA, LSCE IPSL, F-91198 Gif Sur Yvette, France
关键词:
Single-grain OSL;
Accuracy tests;
Bayesian statistics;
Central Age Model;
Comparative study;
SOUTH-AMERICA;
QUARTZ;
CHRONOLOGY;
SEDIMENTS;
SITE;
DISPERSION;
PIAUI;
CAVE;
D O I:
10.1016/j.radmeas.2015.04.002
中图分类号:
TL [原子能技术];
O571 [原子核物理学];
学科分类号:
0827 ;
082701 ;
摘要:
While reviews of comparisons between multi-grain OSL ages and independent chronological information are available in the literature, there is hardly any such performance test for single-grain OSL ages. And yet, this is all the more needed as the interpretation of single-grain dose distributions remains a difficult task, given the typically considerable dispersion in equivalent dose values measured by OSL and the numerous sources of such dispersion in measurements. Here, we present the study of 19 samples for which independent age control is available, and whose ages range from 2 to 46 ka. Based on multi-grain OSL age estimates, these samples are presumed to have been both well-bleached at burial, and unaffected by mixing after deposition. Two ways of estimating single-grain ages are then compared: the standard approach on the one hand, consisting of applying the Central Age Model to De values determined with the Analyst software; on the other hand, the central dose model recently proposed by Combes et al. (Combes, B., Philippe, A., Lanos, P., Mercier, N., Tribolo, C., Guerin, G., Guibert, P., Lahaye, C., in press. Quaternary Geochronology). The median of the relative discrepancy between single-grain OSL and reference ages is about twice as large for the standard approach (12%) as with the Bayesian model (7%). Statistical tests show that, based on our (limited) dataset, the difference between the two models seems to be significant for samples in the age range 4-46 ka. Finally, the influence of various factors on the (in-)accuracy of single grain OSL ages is discussed; it appears that the accuracy of ages estimated in a standard way decreases when age is increased, while the Bayesian model seems more robust. This study also shows that (i) there is no 20% limit on the CAM overdispersion parameter for well-bleached samples; (ii) dose recovery experiments do not seem to be a very reliable tool to estimate the accuracy of a SAR measurement protocol for age determination. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:62 / 70
页数:9
相关论文