Topological Indices of the Non-commuting Graph for Generalised Quaternion Group

被引:7
|
作者
Sarmin, Nor Haniza [1 ]
Alimon, Nur Idayu [1 ]
Erfanian, Ahmad [2 ]
机构
[1] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Johor Baharu 81310, Johor, Malaysia
[2] Ferdowsi Univ Mashhad, Fac Math Sci, Dept Pure Math, Mashhad, Razavi Khorasan, Iran
关键词
Wiener index; Zagreb index; Non-commuting graph; Generalised quaternion group; DISTANCE;
D O I
10.1007/s40840-019-00872-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A topological index is a numerical value associated with chemical constitution for correlation of chemical structure with various physical properties and chemical reactivity. It is calculated from a graph representing a molecule. Meanwhile, the non-commuting graph,Gamma GofG, is defined as a graph of vertex set whose vertices are non-central elements and two distinct vertices are joined by an edge if and only if they do not commute. The main objective of this article is to determine the general formula of some topological indices, namely Wiener index, first Zagreb index and second Zagreb index for the non-commuting graph associated with generalised quaternion group in terms ofn.
引用
收藏
页码:3361 / 3367
页数:7
相关论文
共 50 条
  • [1] Topological Indices of the Non-commuting Graph for Generalised Quaternion Group
    Nor Haniza Sarmin
    Nur Idayu Alimon
    Ahmad Erfanian
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 3361 - 3367
  • [2] THE GENERALISED NON-COMMUTING GRAPH OF A FINITE GROUP
    Ghayekhloo, Somayeh
    Erfanian, Ahmad
    Tolue, Behnaz
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2014, 67 (08): : 1037 - 1044
  • [3] Topological indices of non-commuting graph of dihedral groups
    Alimon, Nur Idayu
    Sarmin, Nor Haniza
    Erfanian, Ahmad
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2018, 14 : 473 - 476
  • [4] Non-commuting graph of a group
    Abdollahi, A
    Akbari, S
    Maimani, HR
    JOURNAL OF ALGEBRA, 2006, 298 (02) : 468 - 492
  • [5] SOME DISTANCE-BASED TOPOLOGICAL INDICES OF A NON-COMMUTING GRAPH
    Mirzargar, M.
    Ashrafi, A. R.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 41 (04): : 515 - 526
  • [6] COMPUTATION OF TOPOLOGICAL INDICES OF NON-COMMUTING GRAPHS
    Jahandideh, M.
    Darafsheh, M. R.
    Shirali, N.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, (34): : 299 - 310
  • [7] The twin non-commuting graph of a group
    Behnaz Tolue
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 591 - 599
  • [8] The twin non-commuting graph of a group
    Tolue, Behnaz
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (02) : 591 - 599
  • [9] On the non-commuting graph of dihedral group
    Khasraw, Sanhan Muhammad Salih
    Ali, Ivan Dler
    Haji, Rashad Rashid
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2020, 8 (02) : 233 - 239
  • [10] GENERALIZATION OF NON-COMMUTING GRAPH OF A FINITE GROUP
    Mansour, Y. Hosseininia
    Talebi, A. A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (01): : 1 - 8