Action Rules for Sentiment Analysis on Twitter Data using Spark

被引:6
|
作者
Ranganathan, Jaishree [1 ]
Irudayaraj, Allen S. [1 ]
Tzacheva, Angelina A. [1 ]
机构
[1] Univ North Carolina Charlotte, Dept Comp Sci, Charlotte, NC 28223 USA
关键词
Sentiment Analysis; Natural Language Processing; Action Rules; Meta-Actions; Apache Spark; Hadoop MapReduce;
D O I
10.1109/ICDMW.2017.14
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Action Rules are vital data mining method for gaining actionable knowledge from the datasets. Meta actions are the sub-actions to the Action Rules, which intends to change the attribute value of an object, under consideration, to attain the desirable value. The essence of this paper to propose a new optimized and more promising system, in terms of speed and efficiency, for generating meta-actions by implementing Specific Action Rule discovery based on Grabbing strategy (SARGS) algorithm. For this, we perform a comparative analysis of meta-actions generating algorithmic implementation in Apache Spark driven system and conventional Hadoop driven system using the Twitter social networking data and evaluate the results. We perform corpus based Sentimental Analysis of social networking data, and test the total time taken by both the systems and their sub components for the data processing. Results show faster computational time for Spark system compared to Hadoop MapReduce for implementing the meta-action generation methods.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 50 条
  • [1] Sentiment Analysis on Twitter Data using Apache Spark Framework
    Elzayady, Hossam
    Badran, Khaled M.
    Salama, Gouda I.
    [J]. PROCEEDINGS OF 2018 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES), 2018, : 171 - 176
  • [2] An Apache Spark Implementation for Sentiment Analysis on Twitter Data
    Baltas, Alexandros
    Kanavos, Andreas
    Tsakalidis, Athanasios K.
    [J]. ALGORITHMIC ASPECTS OF CLOUD COMPUTING, ALGOCLOUD 2016, 2017, 10230 : 15 - 25
  • [3] Sentiment analysis on Twitter data towards climate action
    Rosenberg, Emelie
    Tarazona, Carlota
    Mallor, Fermin
    Eivazi, Hamidreza
    Pastor-Escuredo, David
    Fuso-Nerini, Francesco
    Vinuesa, Ricardo
    [J]. RESULTS IN ENGINEERING, 2023, 19
  • [4] Generalized Association Rules for Sentiment Analysis in Twitter
    Angel Diaz-Garcia, J.
    Dolores Ruiz, M.
    Martin-Bautista, Maria J.
    [J]. FLEXIBLE QUERY ANSWERING SYSTEMS, 2019, 11529 : 166 - 175
  • [5] Sentiment Analysis of Twitter Data
    Desai, Radhi D.
    [J]. PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 114 - 117
  • [6] Sentiment Analysis of Twitter Data
    Wang, Yili
    Guo, Jiaxuan
    Yuan, Chengsheng
    Li, Baozhu
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [7] Sentiment Analysis of Twitter Data
    El Rahman, Sahar A.
    AlOtaibi, Feddah Alhumaidi
    AlShehri, Wejdan Abdullah
    [J]. 2019 INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCIS), 2019, : 336 - 339
  • [8] Sentiment Analysis on Automobile Brands Using Twitter Data
    Asghar, Zain
    Ali, Tahir
    Ahmad, Imran
    Tharanidharan, Sridevi
    Nazar, Shamim Kamal Abdul
    Kamal, Shahid
    [J]. INTELLIGENT TECHNOLOGIES AND APPLICATIONS, INTAP 2018, 2019, 932 : 76 - 85
  • [9] Sentiment Analysis Framework of Twitter Data Using Classification
    Khurana, Medha
    Gulati, Anurag
    Singh, Saurabh
    [J]. 2018 FIFTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (IEEE PDGC), 2018, : 459 - 464
  • [10] Sentiment Analysis On Twitter Data Using Distributed Architecture
    Karhan, Zebra
    Soysaldi, Meryem
    Ozben, Yagiz Ozgenc
    Kilic, Erdal
    [J]. 2018 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2018, : 357 - 360