On Representations of Quantum Conjugacy Classes of GL(n)

被引:3
|
作者
Ashton, Thomas [1 ]
Mudrov, Andrey [1 ]
机构
[1] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England
关键词
Poisson-Lie manifolds; quantization; highest weight modules; MATRIX;
D O I
10.1007/s11005-013-0633-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let O be a closed Poisson conjugacy class of the complex algebraic Poisson group GL(n) relative to the Drinfeld-Jimbo factorizable classical r-matrix. Denote by T the maximal torus of diagonal matrices in GL(n). With every a is an element of O boolean AND T we associate a highest weight module M-a over the quantum group U-q(gl(n) and an equivariant quantization C-(h) over bar,(a)[O] of the polynomial ring C [O] realized by operators on M-a. All quantizations C-(h) over bar,(a)[O] are isomorphic and can be regarded as different exact representations of the same algebra, C-(h) over bar[O]. Similar results are obtained for semisimple adjoint orbits in gl(n) equipped with the canonical GL(n)-invariant Poisson structure.
引用
收藏
页码:1029 / 1045
页数:17
相关论文
共 50 条