Maximal pseudometrics and distortion of circle diffeomorphisms

被引:1
|
作者
Cohen, Michael P. [1 ]
机构
[1] Carleton Coll, Dept Math & Stat, 1 North Coll St, Northfield, MN 55057 USA
关键词
20F65; 22A05; 37E05; 37E10 (primary); ELEMENTS;
D O I
10.1112/jlms.12348
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We initiate a study of distortion elements in the Polish groupsDiff+k(S1)(1 <= k<infinity), as well asDiff+1+AC(S1), in terms of maximal metrics on these groups. We classify distortion in thek=1case: aC1circle diffeomorphism isC1-undistorted if and only if it has a hyperbolic periodic point. On the other hand, answering a question of Navas, we exhibit analytic circle diffeomorphisms with only nonhyperbolic fixed points which areC1+AC-undistorted, and henceCk-undistorted for allk > 2. In the Appendix, we exhibit a maximal metric onDiff+1+AC(S1), and observe that this group is quasi-isometric to a hyperplane ofL1(I).
引用
收藏
页码:437 / 452
页数:16
相关论文
共 50 条
  • [1] Maximal entropy measures of diffeomorphisms of circle fiber bundles
    Ures, Raul
    Viana, Marcelo
    Yang, Jiagang
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (03): : 1016 - 1034
  • [2] EXAMPLES OF DIFFEOMORPHISMS OF CIRCLE
    LAZUTKIN, VF
    [J]. VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1977, (01): : 49 - 55
  • [3] Rational diffeomorphisms of the circle
    Langer, Joel
    [J]. APPLIED MATHEMATICS LETTERS, 2007, 20 (08) : 876 - 879
  • [4] ON THE BLASCHKE CIRCLE DIFFEOMORPHISMS
    Chu, Haifeng
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (03) : 1169 - 1182
  • [5] Anosov and Circle Diffeomorphisms
    Almeida, Joao P.
    Fisher, Albert M.
    Pinto, Alberto A.
    Rand, David A.
    [J]. DYNAMICS, GAMES AND SCIENCE I, 2011, 1 : 11 - 23
  • [6] Circle diffeomorphisms forced by expanding circle maps
    Homburg, Ale Jan
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 : 2011 - 2024
  • [7] Circle diffeomorphisms: quasi-reducibility and commuting diffeomorphisms
    Benhenda, Mostapha
    [J]. NONLINEARITY, 2012, 25 (07) : 1981 - 1995
  • [8] Analytic linearization of circle diffeomorphisms
    Yoccoz, JC
    [J]. DYNAMICAL SYSTEMS AND SMALL DIVISORS, 2002, 1784 : 125 - 173
  • [9] Rigidity for circle diffeomorphisms with singularities
    Teplinskii, AY
    Khanin, KM
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2004, 59 (02) : 329 - 353
  • [10] TYPICAL BIFURCATIONS OF DIFFEOMORPHISMS OF A CIRCLE
    ARANSON, SK
    [J]. DIFFERENTIAL EQUATIONS, 1987, 23 (03) : 267 - 271