Spiral patterns near Turing instability in a discrete reaction diffusion system

被引:32
|
作者
Li, Meifeng [1 ]
Han, Bo [1 ]
Xu, Li [1 ]
Zhang, Guang [1 ]
机构
[1] Tianjin Univ Commerce, Sch Sci, Tianjin 300134, Peoples R China
关键词
WAVES; MODEL; PERMANENCE; DYNAMICS;
D O I
10.1016/j.chaos.2013.01.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, linear stability analysis is applied to an exponential discrete Lotka-Volterra system, which describes the competition between two identical species. Conditions for the Turing instability are obtained and the emergence of spiral patterns is demonstrated by means of numerical simulations in the vicinity of the bifurcation point. Moreover, the impact of crucial system parameters on the stability and coherence of spiral patterns is illustrated on several examples. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] Turing Patterns in a Reaction-Diffusion System
    WU Yan-Ning WANG Ping-Jian HOU Chun-Ju LIU Chang-Song ZHU Zhen-Gang Key Laboratory of Material Physics
    CommunicationsinTheoreticalPhysics, 2006, 45 (04) : 761 - 764
  • [2] Turing patterns in a reaction-diffusion system
    Wu, YN
    Wang, PJ
    Hou, CJ
    Liu, CS
    Zhu, ZG
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (04) : 761 - 764
  • [3] Instability of turing patterns in reaction-diffusion-ODE systems
    Marciniak-Czochra, Anna
    Karch, Grzegorz
    Suzuki, Kanako
    JOURNAL OF MATHEMATICAL BIOLOGY, 2017, 74 (03) : 583 - 618
  • [4] Instability of turing patterns in reaction-diffusion-ODE systems
    Anna Marciniak-Czochra
    Grzegorz Karch
    Kanako Suzuki
    Journal of Mathematical Biology, 2017, 74 : 583 - 618
  • [5] Spike patterns in a reaction-diffusion ODE model with Turing instability
    Haerting, Steffen
    Marciniak-Czochra, Anna
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (09) : 1377 - 1391
  • [6] Analysing transitions from a Turing instability to large periodic patterns in a reaction-diffusion system
    Brown, Christopher
    Derks, Gianne
    van Heijster, Peter
    Lloyd, David J. B.
    NONLINEARITY, 2023, 36 (12) : 6839 - 6878
  • [7] Oscillatory Turing patterns in a simple reaction-diffusion system
    Liu, Ruey-Tarng
    Liaw, Sy-Sang
    Maini, Philip K.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2007, 50 (01) : 234 - 238
  • [8] Turing Instability and Amplitude Equation of Reaction-Diffusion System with Multivariable
    Zheng, Qianqian
    Shen, Jianwei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [9] Turing instability in the reaction-diffusion network
    Zheng, Qianqian
    Shen, Jianwei
    Xu, Yong
    PHYSICAL REVIEW E, 2020, 102 (06)
  • [10] Turing Instability in Reaction-Diffusion Systems with Nonlinear Diffusion
    Zemskov, E. P.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2013, 117 (04) : 764 - 769