AN ANALYSIS OF GALERKIN PROPER ORTHOGONAL DECOMPOSITION FOR SUBDIFFUSION

被引:20
|
作者
Jin, Bangti [1 ]
Zhou, Zhi [2 ]
机构
[1] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Fractional diffusion; energy argument; proper orthogonal decomposition; error estimates; FRACTIONAL DIFFUSION EQUATION; REDUCED-ORDER MODELS; FINITE-ELEMENT-METHOD; DYNAMICS; SYSTEMS; MEMORY;
D O I
10.1051/m2an/2016017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we develop a novel Galerkin-L1-POD scheme for the subdiffusion model with a Caputo fractional derivative of order alpha is an element of (0, 1) in time, which is often used to describe anomalous diffusion processes in heterogeneous media. The nonlocality of the fractional derivative requires storing all the solutions from time zero. The proposed scheme is based on continuous piecewise linear finite elements, L1 time stepping, and proper orthogonal decomposition (POD). By constructing an effective reduced-order model using problem-adapted basis functions, it can significantly reduce the computational complexity and storage requirement. We shall provide a complete error analysis of the scheme under realistic regularity assumptions by means of a novel energy argument. Extensive numerical experiments are presented to verify the convergence analysis and the efficiency of the proposed scheme.
引用
收藏
页码:89 / 113
页数:25
相关论文
共 50 条
  • [1] Galerkin proper orthogonal decomposition methods for parabolic problems
    K. Kunisch
    S. Volkwein
    [J]. Numerische Mathematik, 2001, 90 : 117 - 148
  • [2] GALERKIN PROJECTIONS AND THE PROPER ORTHOGONAL DECOMPOSITION FOR EQUIVARIANT EQUATIONS
    BERKOOZ, G
    TITI, ES
    [J]. PHYSICS LETTERS A, 1993, 174 (1-2) : 94 - 102
  • [3] Galerkin proper orthogonal decomposition methods for parabolic problems
    Kunisch, K
    Volkwein, S
    [J]. NUMERISCHE MATHEMATIK, 2001, 90 (01) : 117 - 148
  • [4] Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics
    Kunisch, K
    Volkwein, S
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (02) : 492 - 515
  • [5] GALERKIN APPROXIMATION WITH PROPER ORTHOGONAL DECOMPOSITION: NEW ERROR ESTIMATES AND ILLUSTRATIVE EXAMPLES
    Chapelle, Dominique
    Gariah, Asven
    Sainte-Marie, Jacques
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (04): : 731 - 757
  • [6] THE PROPER ORTHOGONAL DECOMPOSITION IN THE ANALYSIS OF TURBULENT FLOWS
    BERKOOZ, G
    HOLMES, P
    LUMLEY, JL
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 1993, 25 : 539 - 575
  • [7] Isogeometric Analysis with Proper Orthogonal Decomposition for Elastodynamics
    Li, Richen
    Wu, Qingbiao
    Zhu, Shengfeng
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 30 (02) : 396 - 422
  • [8] A GALERKIN STRATEGY WITH PROPER ORTHOGONAL DECOMPOSITION FOR PARAMETER-DEPENDENT PROBLEMS - ANALYSIS, ASSESSMENTS AND APPLICATIONS TO PARAMETER ESTIMATION
    Chapelle, D.
    Gariah, A.
    Moireau, P.
    Sainte-Marie, J.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (06): : 1821 - 1843
  • [9] Proper orthogonal decomposition and Galerkin projection for a three-dimensional plasma dynamical system
    Beyer, P
    Benkadda, S
    Garbet, X
    [J]. PHYSICAL REVIEW E, 2000, 61 (01): : 813 - 823
  • [10] Isogeometric analysis and proper orthogonal decomposition for parabolic problems
    Zhu, Shengfeng
    Dede, Luca
    Quarteroni, Alfio
    [J]. NUMERISCHE MATHEMATIK, 2017, 135 (02) : 333 - 370