A Short-Term Ensemble Wind Speed Forecasting System for Wind Power Applications

被引:18
|
作者
Traiteur, Justin J. [1 ]
Callicutt, David J. [1 ]
Smith, Maxwell [1 ]
Roy, Somnath Baidya [1 ]
机构
[1] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA
关键词
PREDICTION SYSTEM; MODEL; TURBULENCE; ECMWF; PERFORMANCE; WEATHER; NCEP;
D O I
10.1175/JAMC-D-11-0122.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 h ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model and persistence, autoregressive, and autoregressive moving-average models. The ensemble is calibrated against observations for a 6-month period (January-June 2006) at a potential wind-farm site in Illinois using the Bayesian model averaging technique. The forecasting system is evaluated against observations for the July 2006-December 2007 period at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble as well the time series models under all environmental stability conditions. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 min. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.
引用
收藏
页码:1763 / 1774
页数:12
相关论文
共 50 条
  • [1] Short-Term Wind Speed Forecasting for Power System Operations
    Zhu, Xinxin
    Genton, Marc G.
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2012, 80 (01) : 2 - 23
  • [2] Hybrid Ensemble Framework for Short-Term Wind Speed Forecasting
    Tang, Zhenhao
    Zhao, Gengnan
    Wang, Gong
    Ouyang, Tinghui
    [J]. IEEE ACCESS, 2020, 8 (08): : 45271 - 45291
  • [3] Short-Term Wind Speed Forecasting Using Ensemble Learning
    Karthikeyan, M.
    Rengaraj, R.
    [J]. 2021 7TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENERGY SYSTEMS (ICEES), 2021, : 502 - 506
  • [4] Wind Power Short-Term Forecasting System
    Dica, C.
    Dica, Camelia-Ioana
    Vasiliu, Daniela
    Comanescu, Gh
    Ungureanu, Monica
    [J]. 2009 IEEE BUCHAREST POWERTECH, VOLS 1-5, 2009, : 508 - +
  • [5] A hybrid system for short-term wind speed forecasting
    He, Qingqing
    Wang, Jianzhou
    Lu, Haiyan
    [J]. APPLIED ENERGY, 2018, 226 : 756 - 771
  • [6] Decomposition-Selection-Ensemble Prediction System for Short-Term Wind Speed Forecasting
    Jiang, Ping
    Liu, Zhenkun
    Wang, Jianzhou
    Zhang, Lifang
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2022, 211
  • [7] Short-term forecasting of wind speed and related electrical power
    Alexiadis, MC
    Dikopoulos, PS
    Sahsamanoglou, HS
    Manousaridis, IM
    [J]. SOLAR ENERGY, 1998, 63 (01) : 61 - 68
  • [8] Short-term wind speed and power forecasting using an ensemble of mixture density neural networks
    Men, Zhongxian
    Yee, Eugene
    Lien, Fue-Sang
    Wen, Deyong
    Chen, Yongsheng
    [J]. RENEWABLE ENERGY, 2016, 87 : 203 - 211
  • [9] Short-Term Wind Power Forecasting Based on SVM with Backstepping Wind Speed of Power Curve
    Yang, Xiyun
    Wei, Peng
    Liu, Huan
    Sun, Baojun
    [J]. INDUSTRIAL DESIGN AND MECHANICAL POWER, 2012, 224 : 401 - +
  • [10] An advanced model for short-term forecasting of mean wind speed and wind electric power
    Ramírez-Rosado, I.J.
    Fernández-Jiménez, L.A.
    [J]. Control and Intelligent Systems, 2004, 32 (01) : 21 - 26