Finite Difference Approximation of Hedging Quantities in the Heston model

被引:0
|
作者
't Hout, Karel In [1 ]
机构
[1] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
关键词
financial option pricing; hedging quantities; Heston model; finite difference methods;
D O I
10.1063/1.4756108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note concerns the hedging quantities Delta and Gamma in the Heston model for European-style financial options. A modification of the discretization technique from In ' t Hout & Foulon (2010) is proposed, which enables a fast and accurate approximation of these important quantities. Numerical experiments are given that illustrate the performance.
引用
收藏
页码:242 / 245
页数:4
相关论文
共 50 条
  • [1] Option Delta Hedging in the Heston Model
    Malek, Jiri
    MANAGING AND MODELLING OF FINANCIAL RISKS: 7TH INTERNATIONAL SCIENTIFIC CONFERENCE, PTS I-III, 2014, : 478 - 483
  • [2] ADI FINITE DIFFERENCE SCHEMES FOR OPTION PRICING IN THE HESTON MODEL WITH CORRELATION
    Hout, K. J. In't
    Foulon, S.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2010, 7 (02) : 303 - 320
  • [3] Compact Finite Difference Scheme for Option Pricing in Heston's Model
    Duering, Bertram
    Fournie, Michel
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 219 - +
  • [4] HEDGING UNDER THE HESTON MODEL WITH JUMP-TO-DEFAULT
    Carr, Peter
    Schoutens, Wim
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2008, 11 (04) : 403 - 414
  • [5] Stability of central finite difference schemes for the Heston PDE
    in't Hout, Karel J.
    Volders, Kim
    NUMERICAL ALGORITHMS, 2012, 60 (01) : 115 - 133
  • [6] Stability of central finite difference schemes for the Heston PDE
    Karel J. in ’t Hout
    Kim Volders
    Numerical Algorithms, 2012, 60 : 115 - 133
  • [7] PERFECT HEDGING IN ROUGH HESTON MODELS
    El Euch, Omar
    Rosenbaum, Mathieu
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (06): : 3813 - 3856
  • [8] Pricing perpetual timer options under Heston Model by finite difference method: Theory and implementation
    Zhang, Yaoyuan
    Wang, Lihe
    AIMS MATHEMATICS, 2023, 8 (07): : 14978 - 14995
  • [9] Simulating from the Heston model: A gamma approximation scheme
    Begin, Jean-Francois
    Bedard, Mylene
    Gaillardetz, Patrice
    MONTE CARLO METHODS AND APPLICATIONS, 2015, 21 (03): : 205 - 231
  • [10] A finite difference approximation of the kinematic wave model of traffic flow
    Daganzo, CF
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1995, 29 (04) : 261 - 276