A class of recursion operators on a tangent bundle

被引:2
|
作者
Vermeire, F.
Sarlet, W.
Crampin, M.
机构
[1] Univ Ghent, Dept Math Phys & Astron, B-9000 Ghent, Belgium
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
来源
关键词
D O I
10.1088/0305-4470/39/23/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the construction of a class of type (1, 1) tensor fields R on a tangent bundle which was introduced in a preceding paper. The generalization comes from the fact that, apart from a given Lagrangian, the further data consist of a type (1, 1) tensor J along the tangent bundle projection tau : TQ -> Q, rather than a tensor on Q. The main features under investigation are two kinds of recursion properties of R, namely its potential invariance under the flow of the given dynamics and the property of having vanishing Nijenhuis torsion. The theory is applied, in particular, to the case of second-order dynamics coming from a Finsler metric.
引用
收藏
页码:7319 / 7340
页数:22
相关论文
共 50 条
  • [1] Foliations and a class of metrics on tangent bundle
    Peyghan, Esmaeil
    Nourmohammadi Far, Leila
    TURKISH JOURNAL OF MATHEMATICS, 2013, 37 (02) : 348 - 359
  • [2] DIFFERENTIAL OPERATORS ON TANGENT BUNDLE OF ORDER-2
    YUEN, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (14): : 743 - 745
  • [3] A class of metrics and foliations on tangent bundle of Finsler manifolds
    Hongchuan Xia
    Chunping Zhong
    Frontiers of Mathematics in China, 2017, 12 : 417 - 439
  • [4] SOME NOTES CONCERNING TACHIBANA AND VISHNEVSKII OPERATORS IN THE TANGENT BUNDLE
    Khan, Mohammad Nazrul Islam
    Cayir, Hasim
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (04): : 547 - 559
  • [5] A class of Poisson-Nijenhuis structures on a tangent bundle
    Sarlet, W
    Vermeire, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (24): : 6319 - 6336
  • [6] Operators applied to polynomial structures on the semi-tangent bundle
    Yildirim, Furkan
    Akbulut, Kursat
    Kir, Mustafa
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2025, 22 (03)
  • [7] A class of metrics and foliations on tangent bundle of Finsler manifolds
    Xia, Hongchuan
    Zhong, Chunping
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (02) : 417 - 439
  • [8] Differential operators and the Frobenius pull back of the tangent bundle on G/P
    Niels Lauritzen
    Vikram Mehta
    manuscripta mathematica, 1999, 98 : 507 - 510
  • [9] Differential operators and the Frobenius pull back of the tangent bundle on G/P
    Lauritzen, N
    Mehta, V
    MANUSCRIPTA MATHEMATICA, 1999, 98 (04) : 507 - 510
  • [10] ELLIPTIC OPERATORS ON A UNIT VECTOR FIBER BUNDLE TANGENT TO A FINSLERIAN MANIFOLD
    AKBARZADEH, H
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 289 (06): : 405 - 408