Convection in a Thin Liquid Layer with Mixed Thermal Boundary Conditions: Benard-Marangoni Convection

被引:2
|
作者
Gupta, A. K. [1 ]
Surya, D. [2 ]
机构
[1] Himachal Pradesh Univ, Dept Math, Ctr Evening Studies, Shimla 171001, India
[2] Himachal Pradesh Univ, Dept Math & Stat, Shimla 171005, India
关键词
Convection; Conducting; Insulating; Linear stability; Rigid; Surface tension; TENSION DRIVEN INSTABILITY; DEFORMABLE FREE-SURFACE; CELLULAR CONVECTION; GRADIENTS; CELLS;
D O I
10.1007/s40010-016-0339-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate by means of linear stability analysis, the onset of convection in a horizontal liquid layer heated from below, confined below by a rigid plane and above with a free surface whose surface tension linearly depends on temperature. Consideration is given to a variety of thermal boundary conditions at the bounding surfaces. We use a combination of analytical and numerical techniques to obtain a detailed description of marginal stability curves. It is established numerically that the principle of exchange of stabilities is valid. The numerical results are presented for a wide range of the values of the parameters characterizing the nature of thermal boundary conditions. Attention is focused on a situation which is of possible practical interest, where value of the parameter characterizing the thermal condition at the upper boundary varies inversely to the parameter characterizing the thermal condition at the lower boundary, and find that increasing values of the parameter of the lower boundary has destabilizing effect. In this case, we also distinguish ranges of the parameter in which formation of convection cells of increasing or decreasing sizes occur at the onset of convection.
引用
收藏
页码:73 / 79
页数:7
相关论文
共 50 条
  • [1] Convection in a Thin Liquid Layer with Mixed Thermal Boundary Conditions: Bènard–Marangoni Convection
    A. K. Gupta
    D. Surya
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2018, 88 : 73 - 79
  • [2] NONLINEAR BENARD-MARANGONI CONVECTION
    RIAHI, N
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (10) : 3515 - 3524
  • [3] Inertial Benard-Marangoni convection
    Boeck, T
    Thess, A
    JOURNAL OF FLUID MECHANICS, 1997, 350 (350) : 149 - 175
  • [4] On the penetrative Benard-Marangoni convection in a ferromagnetic fluid layer
    Nanjundappa, C. E.
    Shivakumara, I. S.
    Srikumar, K.
    AEROSPACE SCIENCE AND TECHNOLOGY, 2013, 27 (01) : 57 - 66
  • [5] The onset of Benard-Marangoni convection in a horizontal layer of fluid
    Hashim, I
    Wilson, SK
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1999, 37 (05) : 643 - 662
  • [6] Influence of the thickness ratio of air layer to liquid layer on the onset of Benard-Marangoni convection
    Kang, Q
    Hu, WR
    MICROGRAVITY SCIENCE AND TECHNOLOGY, 1999, 12 (02) : 61 - 65
  • [7] Square patterns in Benard-Marangoni convection
    Bestehorn, M
    PHYSICAL REVIEW LETTERS, 1996, 76 (01) : 46 - 49
  • [8] Surface deflection in Benard-Marangoni convection
    Cerisier, P
    Lebon, G
    DYNAMICS OF MULTIPHASE FLOWS ACROSS INTERFACES, 1996, 467 : 117 - 133
  • [9] THERMOVISION APPLIED TO BENARD-MARANGONI CONVECTION
    CERISIER, P
    PANTALONI, J
    FINIELS, G
    AMALRIC, R
    APPLIED OPTICS, 1982, 21 (12): : 2153 - 2159
  • [10] WAVELENGTH SELECTION IN BENARD-MARANGONI CONVECTION
    CERISIER, P
    PEREZGARCIA, C
    JAMOND, C
    PANTALONI, J
    PHYSICAL REVIEW A, 1987, 35 (04): : 1949 - 1952