Structural engineering of SnS2/Graphene nanocomposite for high-performance K-ion battery anode

被引:102
|
作者
Bin, De-Shan [1 ,2 ,3 ]
Duan, Shu-Yi [1 ,2 ,3 ]
Lin, Xi-Jie [1 ,2 ,3 ]
Liu, Lin [1 ,2 ]
Liu, Yuan [1 ,2 ,3 ]
Xu, Yan-Song [1 ,2 ,3 ]
Sun, Yong-Gang [1 ,2 ]
Tao, Xian-Sen [1 ,2 ,3 ]
Cao, An-Min [1 ,2 ,3 ]
Wan, Li-Jun [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Mol Nanostruct & Nanotechnol, Inst Chem, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, CAS Res Educ Ctr Excellence Mol Sci, Inst Chem, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
K-ion battery anode; SnS2/Graphene composite; Sub-5 nm nanoparticles; Anodic aluminium current collector; High-peel-strength electrode; NANOPARTICLES;
D O I
10.1016/j.nanoen.2019.04.032
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
K-ion batteries (KIBs) are drawing increasing research interest as a promising supplement of Li-ion batteries due to the natural abundance of K resource. However, due to the large size of K+, high-capacity anodes are challenged by the structural stability of the active materials which are susceptible to large volumetric deformation after incorporating with a sufficient number of K+. Herein, using SnS2/graphene as an example, we demonstrated that high-performance KIBs anode could be achieved through collaborative efforts targeting on both the active material and the prepared electrode film. The electrochemically-active species of SnS2 were controlled into small nanoparticles with their size below 5 nm to provide sufficient reactive sites for K+ storage. Meanwhile, highly-resilient electrode film based on the prepared SnS2/graphene nanocomposite was built on aluminum (Al) current collector rather than the widely-used copper foil, forming a strong anode film with high peel strength to endure the potassiation/depotassiation process. In this way, the active species was able to deliver an extraordinary reversible capacity of 610 mAh g(-1) with unprecedented high-rate capability (around 290 mAh g(-1) at 2A g(-1)) and promising cycling stability. This contribution sheds light on the rational design of high-performance electrode for KIBs and beyond.
引用
收藏
页码:912 / 918
页数:7
相关论文
共 50 条
  • [1] SnS2/graphene nanocomposite: A high rate anode material for lithium ion battery
    Wei, Wei
    Jia, Fang-Fang
    Wang, Ke-Feng
    Qu, Peng
    CHINESE CHEMICAL LETTERS, 2017, 28 (02) : 324 - 328
  • [2] SnS2/graphene nanocomposite:A high rate anode material for lithium ion battery
    Wei Wei
    Fang-Fang Jia
    Ke-Feng Wang
    Peng Qu
    Chinese Chemical Letters, 2017, 28 (02) : 324 - 328
  • [3] Engineering Hollow Carbon Architecture for High-Performance K-Ion Battery Anode
    Bin, De-Shan
    Lin, Xi-Jie
    Sun, Yong-Gang
    Xu, Yan-Song
    Zhang, Ke
    Cao, An-Min
    Wan, Li-Jun
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (23) : 7127 - 7134
  • [4] SnS2 Nanosheets with RGO Modification as High-Performance Anode Materials for Na-Ion and K-Ion Batteries
    Wu, Leqiang
    Shao, Hengjia
    Yang, Chen
    Feng, Xiangmin
    Han, Linxuan
    Zhou, Yanli
    Du, Wei
    Sun, Xueqin
    Xu, Zhijun
    Zhang, Xiaoyu
    Jiang, Fuyi
    Dong, Caifu
    NANOMATERIALS, 2021, 11 (08)
  • [5] Theoretical study of SnS2 encapsulated in graphene as a promising anode material for K-ion batteries
    Kang, Xuxin
    Xu, Wei
    Duan, Xiangmei
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (09)
  • [6] Biomass CQDs derivate carbon as high-performance anode for K-ion battery
    Wang, Dengyang
    Wang, Qing
    Tan, Mingxiu
    Wang, Shasha
    Luo, Shaohua
    Hou, Pengqing
    Zhang, Yahui
    Yan, Shengxue
    Liu, Xin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 922
  • [7] High-Performance and Reactivation Characteristics of High-Quality, Graphene-Supported SnS2 Heterojunctions for a Lithium-Ion Battery Anode
    Li, Jianhui
    Han, Shaobo
    Zhang, Chenyu
    Wei, Wei
    Gu, Meng
    Meng, Lingjie
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (25) : 22314 - 22322
  • [8] Solid-State Fabrication of SnS2/C Nanospheres for High-Performance Sodium Ion Battery Anode
    Wang, Jingjing
    Luo, Chao
    Mao, Jianfeng
    Zhu, Yujie
    Fan, Xiulin
    Gao, Tao
    Mignerey, Alice C.
    Wang, Chunsheng
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (21) : 11476 - 11481
  • [9] K quasi-intercalation in black P nanocomposite as a high-performance anode for K-ion batteries
    Kim, Do-Hyeon
    Lee, Young-Han
    Han, Je-Hyeon
    Yoon, Jeong-Myeong
    Yeon, Sun-Hwa
    Choi, Jeong-Hee
    Park, Cheol-Min
    JOURNAL OF POWER SOURCES, 2025, 629
  • [10] MoS2/SnS2 nanocomposite as stable sodium-ion battery anode
    Yan, Jingkai
    Li, Qinyi
    Hao, Yu
    Dai, Chen
    Chen, Yu
    FUNCTIONAL MATERIALS LETTERS, 2020, 13 (01)