Clade- and species-specific features of genome evolution in the Saccharomycetaceae

被引:45
|
作者
Wolfe, Kenneth H. [1 ]
Armisen, David [2 ,3 ]
Proux-Wera, Estelle [2 ,4 ]
OhEigeartaigh, Sean S. [2 ,5 ]
Azam, Haleema [2 ]
Gordon, Jonathan L. [2 ,6 ]
Byrne, Kevin P. [1 ]
机构
[1] Univ Coll Dublin, Sch Med & Med Sci, UCD Conway Inst, Dublin 4, Ireland
[2] Univ Dublin Trinity Coll, Smurfit Inst Genet, Dublin 2, Ireland
[3] ENS Lyon, Inst Genom Fonct Lyon, CNRS UMR 5242, INRA USC 1370, F-69364 Lyon 07, France
[4] Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, S-17121 Solna, Sweden
[5] Univ Cambridge, CRASSH, Ctr Study Existential Risk, Cambridge CB3 9DT, England
[6] CIRAD, UMR CMAEE, F-97170 Petit Bourg, Guadeloupe, France
基金
欧洲研究理事会; 爱尔兰科学基金会;
关键词
evolution; comparative genomics; Kazachstania; Naumovozyma; Tetrapisispora; Torulaspora; POPULATION GENOMICS; YEAST; GENE; SEQUENCE; DUPLICATION; LIFE; DIFFERENTIATION; KLUYVEROMYCES; CHROMOSOMES; SPECTRUM;
D O I
10.1093/femsyr/fov035
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Many aspects of the genomes of yeast species in the family Saccharomycetaceae have been well conserved during evolution. They have similar genome sizes, genome contents, and extensive collinearity of gene order along chromosomes. Gene functions can often be inferred reliably by using information from Saccharomyces cerevisiae. Beyond this conservative picture however, there are many instances where a species or a clade diverges substantially from the S. cerevisiae paradigm-for example, by the amplification of a gene family, or by the absence of a biochemical pathway or a protein complex. Here, we review clade-specific features, focusing on genomes sequenced in our laboratory from the post-WGD genera Naumovozyma, Kazachstania and Tetrapisispora, and from the non-WGD species Torulaspora delbrueckii. Examples include the loss of the pathway for histidine synthesis in the cockroach-associated species Tetrapisispora blattae; the presence of a large telomeric GAL gene cluster in To. delbrueckii; losses of the dynein and dynactin complexes in several independent yeast lineages; fragmentation of the MAT locus and loss of the HO gene in Kazachstania africana; and the patchy phylogenetic distribution of RNAi pathway components.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Clade- specific forebrain cytoarchitectures of the extinct Tasmanian tiger
    Haines, Elizabeth
    Bailey, Evan
    Nelson, John
    Fenlon, Laura R.
    Suarez, Rodrigo
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (32)
  • [2] Differential genome analysis applied to the species-specific features of Helicobacter pylori
    Huynen, M
    Dandekar, T
    Bork, P
    FEBS LETTERS, 1998, 426 (01) : 1 - 5
  • [3] Species-specific cortex features
    Christine Weber
    Nature Cell Biology, 2021, 23 : 1108 - 1108
  • [4] Species-specific cortex features
    Weber, Christine
    NATURE CELL BIOLOGY, 2021, 23 (11) : 1108 - 1108
  • [5] Species-specific evolution of telomeric and rDNA repeats in the tobacco composite genome
    Kovarik, A
    Fajkus, J
    Koukalova, B
    Bezdek, M
    THEORETICAL AND APPLIED GENETICS, 1996, 92 (08) : 1108 - 1111
  • [6] Species-specific double-strand break repair and genome evolution in plants
    Kirik, A
    Salomon, S
    Puchta, H
    EMBO JOURNAL, 2000, 19 (20): : 5562 - 5566
  • [7] Evolution of visual guanylyl cyclases and their activating proteins with respect to clade and species-specific visual system adaptation
    Gesemann, Matthias
    Neuhauss, Stephan C. F.
    FRONTIERS IN MOLECULAR NEUROSCIENCE, 2023, 16
  • [8] Evolutionary Optimality of Body Features. Species-Specific Lifespan as a Product of Evolution
    Ovsyannikov L.L.
    Biophysics, 2022, 67 (5) : 835 - 844
  • [9] The evolution of (non)species-specific pheromones
    Tyler J. Buchinger
    Weiming Li
    Evolutionary Ecology, 2020, 34 : 455 - 468
  • [10] Mechanism for evolution of species-specific fertilization
    Swanson, WJ
    Vacquier, VD
    MOLECULAR BIOLOGY OF THE CELL, 1998, 9 : 312A - 312A