共 50 条
PROBING PAIN PATHWAYS WITH LIGHT
被引:14
|作者:
Wang, Feng
[1
]
Belanger, Erik
[1
,2
]
Paquet, Marie-Eve
[1
,3
]
Cote, Daniel C.
[1
,2
,4
]
De Koninck, Yves
[1
,2
,5
]
机构:
[1] Univ Laval, Inst Univ Sante Mentale Quebec, Quebec City, PQ, Canada
[2] Univ Laval, Ctr Opt Photon & Laser, Quebec City, PQ, Canada
[3] Univ Laval, Dept Biochim Microbiol & Bioinformat, Quebec City, PQ, Canada
[4] Univ Laval, Dept Phys Genie Phys & Opt, Quebec City, PQ, Canada
[5] Univ Laval, Dept Psychiat & Neurosci, Quebec City, PQ, Canada
来源:
基金:
加拿大健康研究院;
关键词:
optogenetics;
nonlinear microscopy;
fiber-optics;
optrodes;
nociceptive processing;
CENTRAL-NERVOUS-SYSTEM;
DORSAL-ROOT GANGLIA;
LAMINA-I NEURONS;
RAMAN SCATTERING MICROSCOPY;
MOUSE SPINAL-CORD;
POLARIMETRIC MULTIPHOTON MICROSCOPY;
INTENSITY DISTRIBUTION ANALYSIS;
PERIPHERAL SENSORY NEURONS;
LASER-SCANNING MICROSCOPY;
RECOMBINANT RABIES VIRUS;
D O I:
10.1016/j.neuroscience.2016.09.035
中图分类号:
Q189 [神经科学];
学科分类号:
071006 ;
摘要:
We have witnessed an accelerated growth of photonics technologies in recent years to enable not only monitoring the activity of specific neurons, while animals are performing certain types of behavior, but also testing whether specific cells, circuits, and regions are sufficient or necessary for initiating, maintaining, or altering this or that behavior. Compared to other sensory systems, however, such as the visual or olfactory system, photonics applications in pain research are only beginning to emerge. One reason pain studies have lagged behind is that many of the techniques originally developed cannot be directly implemented to study key relay sites within pain pathways, such as the skin, dorsal root ganglia, spinal cord, and brain-stem. This is due, in part, to difficulties in accessing these structures with light. Here we review a number of recent advances in design and delivery of light-sensitive molecular probes (sensors and actuators) into pain relay circuits to help decipher their structural and functional organization. We then discuss several challenges that have hampered hardware access to specific structures including light scattering, tissue movement and geometries. We review a number of strategies to circumvent these challenges, by delivering light into, and collecting it from the different key sites to unravel how nociceptive signals are encoded at each level of the neuraxis. We conclude with an outlook on novel imaging modalities for label-free chemical detection and opportunities for multimodal interrogation in vivo. While many challenges remain, these advances offer unprecedented opportunities to bridge cellular approaches with context-relevant behavioral testing, an essential step toward improving translation of basic research findings into clinical applications. (C) 2016 The Authors. Published by Elsevier Ltd on behalf of IBRO.
引用
收藏
页码:248 / 271
页数:24
相关论文