Computing the nearest singular univariate polynomials with given root multiplicities

被引:5
|
作者
Li, Zijia [1 ,2 ]
Zhi, Lihong [2 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
[2] Acad Mil Med Sci, Key Lab Math Mechanizat, Beijing 100190, Peoples R China
基金
奥地利科学基金会;
关键词
Multiplicity structure; Nearest singular polynomial; Multiple roots;
D O I
10.1016/j.tcs.2012.10.027
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we derive explicit expressions for the nearest singular polynomials with given root multiplicities and its distance to the given polynomial. These expressions can be computed recursively. These results extend previous results of Zhi et al. (2004) [10] and Zhi and Wu (1998) [11]. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:150 / 162
页数:13
相关论文
共 39 条
  • [1] Nearest multivariate system with given root multiplicities
    Pope, Scott R.
    Szanto, Agnes
    JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (06) : 606 - 625
  • [2] Hybrid method for computing the nearest singular polynomials
    Lihong Zhi
    Matu-Tarow Noda
    Hiroshi Kai
    Wenda Wu
    Japan Journal of Industrial and Applied Mathematics, 2004, 21
  • [3] Hybrid method for computing the nearest singular polynomials
    Zhi, LH
    Noda, MT
    Kai, H
    Wu, W
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2004, 21 (02) : 149 - 162
  • [4] Counting polynomials over finite fields with given root multiplicities
    Almousa, Ayah
    Wood, Melanie Matchett
    JOURNAL OF NUMBER THEORY, 2014, 136 : 394 - 402
  • [5] Nearest singular polynomials
    Zhi, LH
    Wu, WD
    JOURNAL OF SYMBOLIC COMPUTATION, 1998, 26 (06) : 667 - 675
  • [6] Nearest common root of a set of polynomials: A structured singular value approach
    Limantseva, Olga
    Halikias, George
    Karcanias, Nicos
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 584 : 233 - 256
  • [7] Parametric "non-nested" discriminants for multiplicities of univariate polynomials
    Hong, Hoon
    Yang, Jing
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (08) : 1911 - 1932
  • [8] Parametric “non-nested” discriminants for multiplicities of univariate polynomials
    Hoon Hong
    Jing Yang
    Science China(Mathematics), 2024, 67 (08) : 1911 - 1932
  • [9] Algorithm for computing μ-bases of univariate polynomials
    Hong, Hoon
    Hough, Zachary
    Kogan, Irina A.
    JOURNAL OF SYMBOLIC COMPUTATION, 2017, 80 : 844 - 874
  • [10] Computing Approximate GCD of Univariate Polynomials
    Khare, S. R.
    Pillai, H. K.
    Belur, M. N.
    18TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, 2010, : 437 - 441