Multivariate Covariance using Principal Component Analysis for Reconstruction of Bidirected Gene Regulatory Networks

被引:2
|
作者
Khalid, Mehrosh [1 ]
Khan, Sharifullah [1 ]
Ahmad, Jamil [2 ]
Shaheryar, Muhammad [3 ]
机构
[1] NUST, SEECS, Islamabad, Pakistan
[2] Natl Univ Sci & Technol, RCMS, Islamabad, Pakistan
[3] CUST, Dept Comp Sci, Islamabad, Pakistan
来源
2017 INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT) | 2017年
关键词
Multivariate covariance; Principal Component Analysis; asymmetric; non-diagonal; R-PACKAGE; EXPRESSION; ARABIDOPSIS; TRANSCRIPTION; PATHWAYS;
D O I
10.1109/FIT.2017.00048
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Gene Regulatory Networks (GRNs) visualize the dynamic behavior of genetic components and their complex interactions. Reconstructing GRNs from gene expression data is in practice using multiple approaches. These approaches result in symmetrical and diagonal gene interaction matrices. However, they cannot predict all kinds of regulatory network motifs between gene pairs, such as activation, inhibition and self regulations. The proposed approach applies multivariate covariances and Principal Component Analysis (PCA) to identify asymmetric and non-diagonal gene interactions. The proposed approach generated bidirected GRNs holding all kinds of regulatory interactions. Moreover, the identified gene regulatory interactions have been verified from the literature.
引用
收藏
页码:229 / 234
页数:6
相关论文
共 50 条
  • [1] Multivariate Process Capability Using Principal Component Analysis
    Shinde, R. L.
    Khadse, K. G.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2009, 25 (01) : 69 - 77
  • [2] Multivariate denoising using wavelets and principal component analysis
    Aminghafari, M
    Cheze, N
    Poggi, JM
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (09) : 2381 - 2398
  • [3] A New Perspective on Principal Component Analysis using Inverse Covariance
    Gulrez, Tauseef
    Al-Odienat, Abdullah
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2015, 12 (01) : 104 - 109
  • [4] Incremental principal component analysis using the approximated covariance matrix
    Cao X.-H.
    Liu H.-W.
    Wu S.-J.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2010, 37 (03): : 459 - 463
  • [5] Reconstruction of latetime cosmology using principal component analysis
    Sharma, Ranbir
    Mukherjee, Ankan
    Jassal, H. K.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (02):
  • [6] Reconstruction of latetime cosmology using principal component analysis
    Ranbir Sharma
    Ankan Mukherjee
    H. K. Jassal
    The European Physical Journal Plus, 137
  • [7] PRINCIPAL COMPONENT ANALYSIS OF MULTIVARIATE IMAGES
    GELADI, P
    ISAKSSON, H
    LINDQVIST, L
    WOLD, S
    ESBENSEN, K
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1989, 5 (03) : 209 - 220
  • [8] Principal component analysis for multivariate extremes
    Drees, Holger
    Sabourin, Anne
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 908 - 943
  • [9] MULTIVARIATE ASSESSMENT OF ACADEMIC YIELD USING PRINCIPAL COMPONENT ANALYSIS
    Zarzo, Manuel
    Marti, Pau
    Gasque, Maria
    Gonzalez-Altozano, Pablo
    EDULEARN10: INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES, 2010,
  • [10] Reduction of the multivariate input dimension using principal component analysis
    Xi, Jianhui
    Han, Min
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 1047 - 1051