NON-UNIFORM HYPERBOLICITY FOR INFINITE DIMENSIONAL COCYCLES
被引:3
|
作者:
Bessa, Mario
论文数: 0引用数: 0
h-index: 0
机构:
Univ Beira Interior, Dept Matemat, P-6201001 Convento De Sto Antonio, Covilha, PortugalUniv Beira Interior, Dept Matemat, P-6201001 Convento De Sto Antonio, Covilha, Portugal
Bessa, Mario
[1
]
Carvalho, Maria
论文数: 0引用数: 0
h-index: 0
机构:
Univ Porto, Dept Matemat, P-4169007 Oporto, PortugalUniv Beira Interior, Dept Matemat, P-6201001 Convento De Sto Antonio, Covilha, Portugal
Carvalho, Maria
[2
]
机构:
[1] Univ Beira Interior, Dept Matemat, P-6201001 Convento De Sto Antonio, Covilha, Portugal
[2] Univ Porto, Dept Matemat, P-4169007 Oporto, Portugal
Random operators;
dominated splitting;
multiplicative ergodic theorem;
Lyapunov exponents;
EXPONENTS;
D O I:
10.1142/S0219493712500268
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Let H be an infinite dimensional Hilbert space, X a compact Hausdorff space and f : X -> X a homeomorphism which preserves a Borel ergodic probability measure which is positive on non-empty open sets. We prove that non-uniformly Anosov cocycles are C-0-dense in the family of partially hyperbolic cocycles with non-trivial unstable bundles.
机构:
Sorbonne Univ, Lab Probabilites Stat & Modelisat LPSM, UMR 8001, 4 Pl Jussieu, F-75252 Paris 05, France
Shanghai Ctr Math Sci, Jiangwan Campus,2005 Songhu Rd, Shanghai 200438, Peoples R ChinaSorbonne Univ, Lab Probabilites Stat & Modelisat LPSM, UMR 8001, 4 Pl Jussieu, F-75252 Paris 05, France