Probabilistic Attention for Interactive Segmentation

被引:0
|
作者
Gabbur, Prasad [1 ]
Bilkhu, Manjot [1 ]
Movellan, Javier [1 ]
机构
[1] Apple, Tucson, AZ USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We provide a probabilistic interpretation of attention and show that the standard dotproduct attention in transformers is a special case of Maximum A Posteriori (MAP) inference. The proposed approach suggests the use of Expectation Maximization algorithms for online adaptation of key and value model parameters. This approach is useful for cases in which external agents, e.g., annotators, provide inference-time information about the correct values of some tokens, e.g., the semantic category of some pixels, and we need for this new information to propagate to other tokens in a principled manner. We illustrate the approach on an interactive semantic segmentation task in which annotators and models collaborate online to improve annotation efficiency. Using standard benchmarks, we observe that key adaptation boosts model performance (similar to 10% mIoU) in the low feedback regime and value propagation improves model responsiveness in the high feedback regime. A PyTorch layer implementation of our probabilistic attention model is available here: https://github.com/apple/ml- probabilistic- attention.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Probabilistic Diffusion for Interactive Image Segmentation
    Wang, Tao
    Yang, Jian
    Ji, Zexuan
    Sun, Quansen
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (01) : 330 - 342
  • [2] Interactive image segmentation using probabilistic hypergraphs
    Ding, Lei
    Yilmaz, Alper
    [J]. PATTERN RECOGNITION, 2010, 43 (05) : 1863 - 1873
  • [3] Probabilistic model for 3D interactive segmentation
    Hershkovich, Tsachi
    Shalmon, Tamar
    Shitrit, Ohad
    Halay, Nir
    Menze, Bjoern H.
    Dolgopyat, Irit
    Kahn, Itamar
    Shelef, Ilan
    Raviv, Tammy Riklin
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 151 : 47 - 60
  • [4] Probabilistic Interactive Segmentation for Anthropomorphic Robots in Cluttered Environments
    van Hoof, Herke
    Kroemer, Oliver
    Peters, Jan
    [J]. 2013 13TH IEEE-RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2013, : 169 - 176
  • [5] A probabilistic level set formulation for interactive organ segmentation
    Cremers, Daniel
    Fluck, Oliver
    Rousson, Mikael
    Aharon, Shmuel
    [J]. MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
  • [6] Interactive Image Segmentation via Superpixel Pairs Probabilistic Diffusion
    Xia, Yu
    Wang, Tao
    Ji, Zexuan
    [J]. ELEVENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2019), 2020, 11373
  • [7] Interactive Image Segmentation Based on Feature-Aware Attention
    Sun, Jinsheng
    Ban, Xiaojuan
    Han, Bing
    Yang, Xueyuan
    Yao, Chao
    [J]. SYMMETRY-BASEL, 2022, 14 (11):
  • [8] Medical Image Segmentation via Triplet Interactive Attention Network
    Gao, Chengling
    Ye, Hailiang
    Cao, Feilong
    [J]. Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (05): : 398 - 406
  • [9] Bi-Directional Seed Attention Network for Interactive Image Segmentation
    Song, Gwangmo
    Lee, Kyoung Mu
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1540 - 1544
  • [10] Error Attention Interactive Segmentation of Medical Image Through Matting and Fusion
    Hu, Weifeng
    Yao, Xiaofen
    Zheng, Zhou
    Zhang, Xiaoyun
    Zhong, Yumin
    Wang, Xiaoxia
    Zhang, Ya
    Wang, Yanfeng
    [J]. MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2020, 2020, 12436 : 11 - 20