Transient Analysis of Anisotropic Dielectrics and Ferromagnetic Materials Based on Unconditionally Stable Perfectly-Matched-Layer (PML) Complex-Envelope (CE) Finite-Difference Time-Domain (FDTD) Method

被引:0
|
作者
Ha, Sang-Gyu [1 ]
Cho, Jeahoon [1 ]
Jung, Kyung-Young [1 ]
机构
[1] Hanyang Univ, Dept Elect & Commun Engn, 222 Wangsimni Ro, Seoul 04763, South Korea
关键词
anisotropic dielectrics; ferromagnetic material; finite-difference time-domain (FDTD); MAGNETIC PHOTONIC CRYSTALS; ANTENNAS;
D O I
10.1587/transcom.2016EBP3426
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Anisotropic dielectrics and ferromagnetic materials are widely used in dispersion-engineered metamaterials. For example, nonreciprocal magnetic photonic crystals (MPhCs) are periodic structures whose unit cell is composed of two misaligned anisotropic dielectric layers and one ferromagnetic layer and they have extraordinary characteristics such as wave slowdown and field amplitude increase. We develop an unconditionally stable complex-envelop alternating-direction-implicit finite-difference time-domain method (CE-ADI-FDTD) suitable for the transient analysis of anisotropic dielectrics and ferromagnetic materials. In the proposed algorithm, the perfectly-matched-layer (PML) is straightforwardly incorporated in Maxwell's curl equations. Numerical examples show that the proposed PML-CE-ADI-FDTD method can reduce the CPU time significantly for the transient analysis of anisotropic dielectrics and ferromagnetic materials while maintaining computational accuracy.
引用
收藏
页码:1879 / 1883
页数:5
相关论文
共 20 条
  • [1] Stable perfectly-matched-layer boundary conditions for finite-difference time-domain simulation of acoustic waves in piezoelectric crystals
    Cooper, J. D.
    Valavanis, A.
    Ikonic, Z.
    Harrison, P.
    Cunningham, J. E.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 253 : 239 - 246
  • [2] A new update algorithm in a finite-difference time-domain implementation of anisotropic perfectly matched layer
    G. Ögücü
    T. Ege
    [J]. Electrical Engineering, 2003, 85 : 109 - 111
  • [3] A new update algorithm in a finite-difference time-domain implementation of anisotropic perfectly matched layer
    Ögücü, G
    Ege, T
    [J]. ELECTRICAL ENGINEERING, 2003, 85 (02) : 109 - 111
  • [4] Perfectly matched layer method in the finite-difference time-domain and frequency-domain calculations
    Shyroki, D. M.
    Lavrinenko, A. V.
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2007, 244 (10): : 3506 - 3514
  • [5] The perfectly matched layer boundary condition for scalar finite-difference time-domain method
    Zhou, D
    Huang, WP
    Xu, CL
    Fang, DG
    Chen, B
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2001, 13 (05) : 454 - 456
  • [6] Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials
    Udagedara, Indika
    Premaratne, Malin
    Rukhlenko, Ivan D.
    Hattori, Haroldo T.
    Agrawal, Govind P.
    [J]. OPTICS EXPRESS, 2009, 17 (23): : 21179 - 21190
  • [7] An efficient implementation of Berenger's perfectly matched layer (PML) for finite-difference time-domain mesh truncation
    Veihl, JC
    Mittra, R
    [J]. IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1996, 6 (02): : 94 - 96
  • [8] Uniform stable conformal convolutional perfectly matched layer for enlarged cell technique conformal finite-difference time-domain method
    王玥
    王建国
    陈再高
    [J]. Chinese Physics B, 2015, 24 (02) : 132 - 140
  • [9] Uniform stable conformal convolutional perfectly matched layer for enlarged cell technique conformal finite-difference time-domain method
    Wang Yue
    Wang Jian-Guo
    Chen Zai-Gao
    [J]. CHINESE PHYSICS B, 2015, 24 (02)
  • [10] Improved convolutional perfectly matched layer with auxiliary differential equation for the weakly conditionally stable finite-difference time-domain method
    Zhang, Kanglong
    Wu, Yue
    Liang, Weibo
    Wang, Mengjun
    Fan, Chao
    Zheng, Hongxing
    Li, Erping
    [J]. INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2022, 32 (06)