Single crystals of Bombyx mori silk fibroin in the metastable silk I polymorph have been produced using a new foaming technique. Foams of silk protein are generated by bubbling pure nitrogen gas through an aqueous solution of regenerated silk fibroin. The foamed material is collected, dried, and then sonicated to yield individual crystals which were examined using transmission electron microscopy and electron diffraction. It is found that slightly acidic conditions in the solution from which the foam was generated favor the formation of silk II while neutral to slightly basic solutions favor silk I formation. More dilute solutions favor the formation of silk II while more concentrated solutions (about 7 wt.% or greater) favor the formation of silk I. X-ray powder diffraction patterns from the dried silk I foams displayed features highly indicative of silk I. We also report the first single crystal electron diffraction patterns of silk I. These patterns indicate a large unit cell, possibly 22.66 x 5.70 x 20.52 Angstrom, with six chains of six residues, Gly-Ala-Gly-Ala-Gly-Ser. Although we have not fully characterized this complex structure it appears that the chain is nearly fully extended and thus our data is consistent with models possessing general features similar to those proposed by Fossey SA, Nemethy G, Gibson KD, Scheraga HA. (Biopolymers 1991;31:1529-1541). (C) 1999 Elsevier Science B.V. All rights reserved.