THE RANK OF TRIFOCAL GRASSMANN TENSORS

被引:3
|
作者
Bertolini, Marina [1 ]
Besana, Gianmario [2 ]
Bini, Gilberto [3 ]
Turrini, Cristina [1 ]
机构
[1] Univ Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, Italy
[2] DePaul Univ, Coll Comp & Digital Media, 243 South Wabash, Chicago, IL 60604 USA
[3] Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
关键词
tensor rank; border rank; multiview geometry; projective reconstruction in computer vision; RECONSTRUCTION;
D O I
10.1137/19M1277205
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Grassmann tensors arise from classical problems of scene reconstruction in computer vision. Trifocal Grassmann tensors, related to three projections from a projective space of dimension k onto view spaces of varying dimensions, are studied in this work. A canonical form for the combined projection matrices is obtained. When the centers of projections satisfy a natural generality assumption, such canonical form gives a closed formula for the rank of trifocal Grassmann tensors. The same approach is also applied to the case of two projections, confirming a previous result obtained with different methods in [M. Bertolini, G. Besana, and C. Turrini, Ann. Mat. Pura Appl. (4), 196 (2016), pp. 539-553]. The rank of sequences of tensors converging to tensors associated with degenerate configurations of projection centers is also considered, giving concrete examples of a wide spectrum of phenomena that can happen.
引用
收藏
页码:591 / 604
页数:14
相关论文
共 50 条
  • [1] The multilinear rank and core of trifocal Grassmann tensors
    Bertolini, Marina
    Besana, GianMario
    Bini, Gilberto
    Turrini, Cristina
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 698 : 5 - 25
  • [2] Grassmann-Cayley algebra for modelling systems of cameras and the algebraic equations of the manifold of trifocal tensors
    Faugeras, O
    Papadopoulo, T
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 356 (1740): : 1123 - 1150
  • [3] The varieties of bifocal Grassmann tensors
    Marina Bertolini
    Gilberto Bini
    Cristina Turrini
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 2195 - 2217
  • [4] The varieties of bifocal Grassmann tensors
    Bertolini, Marina
    Bini, Gilberto
    Turrini, Cristina
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (05) : 2195 - 2217
  • [5] On Some Properties of Calibrated Trifocal Tensors
    Martyushev, E. V.
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2017, 58 (02) : 321 - 332
  • [6] On Some Properties of Calibrated Trifocal Tensors
    E. V. Martyushev
    [J]. Journal of Mathematical Imaging and Vision, 2017, 58 : 321 - 332
  • [7] Generalized fundamental matrices as Grassmann tensors
    Marina Bertolini
    GianMario Besana
    Cristina Turrini
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 539 - 553
  • [8] Generalized fundamental matrices as Grassmann tensors
    Bertolini, Marina
    Besana, GianMario
    Turrini, Cristina
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (02) : 539 - 553
  • [9] Trifocal tensors for weak perspective and paraperspective projections
    Bruckstein, AM
    Holt, RJ
    Huang, TS
    Netravali, AN
    [J]. PATTERN RECOGNITION, 2001, 34 (02) : 395 - 404
  • [10] Finiteness of rank for Grassmann convexity
    Saldanha, Nicolau
    Shapiro, Boris
    Shapiro, Andmichael
    [J]. COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 445 - 451