Selective syntheses of symmetrical siloxanes and cyclotetrasiloxanes are attained from reactions of silanes and dihydrosilanes, respectively, with water, and the reactions are catalyzed by a NNNHtBu cobalt(II) pincer complex. Interestingly, when phenylsilane was subjected to catalysis with water, a siloxane cage consisting 12 silicon and 18 oxygen centers was obtained and remarkably the reaction proceeded with liberation of 3 equiv of molecular hydrogen (36 H-2) under mild experimental conditions. Upon reaction of silane with different silanols, highly selective and controlled syntheses of higher order monohydrosiloxanes and disiloxymonohydrosilanes were achieved by cobalt catalysis. The liberated molecular hydrogen is the only byproduct observed in all of these transformations. Mechanistic studies indicated that the reactions occur via a homogeneous pathway. Kinetic and independent experiments confirmed the catalytic oxidation of silane to silanol, and further dehydrocoupling processes are involved in syntheses of symmetrical siloxanes, cyclotetrasiloxanes, and siloxane cage compounds, whereas the unsymmetrical monohydrosiloxane syntheses from silanes and silanols proceeded via dehydrogenative coupling reactions. Overall these cobalt-catalyzed oxidative coupling reactions are based on the Si-H, Si-OH, and O-H bond activation of silane, silanol, and water, respectively. Catalytic cycles consisting of Co(II) intermediates are suggested to be operative.