Joint Group Sparse PCA for Compressed Hyperspectral Imaging

被引:60
|
作者
Khan, Zohaib [1 ]
Shafait, Faisal [1 ,2 ]
Mian, Ajmal [1 ]
机构
[1] Univ Western Australia, Sch Comp Sci & Software Engn, Crawley, WA 6009, Australia
[2] Natl Univ Sci & Technol, Sch Elect Engn & Comp Sci, Islamabad 44000, Pakistan
基金
澳大利亚研究理事会;
关键词
Principal component analysis; compressed sensing; image reconstruction; hyperspectral imaging; PRINCIPAL COMPONENT ANALYSIS; LOW-RANK; REGRESSION; SELECTION;
D O I
10.1109/TIP.2015.2472280
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A sparse principal component analysis (PCA) seeks a sparse linear combination of input features (variables), so that the derived features still explain most of the variations in the data. A group sparse PCA introduces structural constraints on the features in seeking such a linear combination. Collectively, the derived principal components may still require measuring all the input features. We present a joint group sparse PCA (JGSPCA) algorithm, which forces the basic coefficients corresponding to a group of features to be jointly sparse. Joint sparsity ensures that the complete basis involves only a sparse set of input features, whereas the group sparsity ensures that the structural integrity of the features is maximally preserved. We evaluate the JGSPCA algorithm on the problems of compressed hyperspectral imaging and face recognition. Compressed sensing results show that the proposed method consistently outperforms sparse PCA and group sparse PCA in reconstructing the hyperspectral scenes of natural and man-made objects. The efficacy of the proposed compressed sensing method is further demonstrated in band selection for face recognition.
引用
收藏
页码:4934 / 4942
页数:9
相关论文
共 50 条
  • [1] Mineral identification in hyperspectral imaging using Sparse-PCA
    Yousefi, Bardia
    Sojasi, Saeed
    Castanedo, Clemente Ibarra
    Beaudoin, Georges
    Huot, Francois
    Maldague, Xavier P. V.
    Chamberland, Martin
    Lalonde, Erik
    [J]. THERMOSENSE: THERMAL INFRARED APPLICATIONS XXXVIII, 2016, 9861
  • [2] Compressive Hyperspectral Imaging via Sparse Tensor and Nonlinear Compressed Sensing
    Yang, Shuyuan
    Wang, Min
    Li, Peng
    Jin, Li
    Wu, Bin
    Jiao, Licheng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (11): : 5943 - 5957
  • [3] JOINT GROUP SPARSE COLLABORATIVE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Tian, Qing
    Zhao, Juan
    Bai, Xia
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 846 - 849
  • [4] Joint sparse and low rank recovery algorithm for compressive hyperspectral imaging
    Gelvez, Tatiana
    Rueda, Hoover
    Arguello, Henry
    [J]. APPLIED OPTICS, 2017, 56 (24) : 6785 - 6795
  • [5] Segmented-Sparse-PCA for Hyperspectral Image Classification
    Haque Shemul, Md. Shahriar
    Rahman, Md Moshiur
    Ahmed, Shabbir
    Marjan, Md. Abu
    Uddin, Md. Palash
    Afjal, Masud Ibn
    [J]. 4th International Conference on Electrical, Computer and Telecommunication Engineering, ICECTE 2022, 2022, : 167 - 170
  • [6] Hyperspectral polarization-compressed imaging and reconstruction with sparse basis optimized by particle swarm optimization
    Fan, Axin
    Xu, Tingfa
    Teng, Geer
    Wang, Xi
    Zhang, Yuhan
    Pan, Chenguang
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 206
  • [7] -HYPERSPECTRAL IMAGE COMPRESSED SENSING VIA LOW-RANK AND JOINT-SPARSE MATRIX RECOVERY
    Golbabaee, Mohammad
    Vandergheynst, Pierre
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2741 - 2744
  • [8] Compressed Sensing CPMG with Group-Sparse Reconstruction for Myelin Water Imaging
    Chen, Henry S.
    Majumdar, Angshul
    Kozlowski, Piotr
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2014, 71 (03) : 1166 - 1171
  • [9] Group-Based Sparse Representation for Compressed Sensing Image Reconstruction with Joint Regularization
    Wang, Rongfang
    Qin, Yali
    Wang, Zhenbiao
    Zheng, Huan
    [J]. ELECTRONICS, 2022, 11 (02)
  • [10] HYPERSPECTRAL UNMIXING WITH SPARSE GROUP LASSO
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3586 - 3589