Inverse Box-Cox: The power-normal distribution

被引:51
|
作者
Freeman, J
Modarres, R [1 ]
机构
[1] George Washington Univ, Dept Stat, Washington, DC 20052 USA
[2] US EPA, Off Water, Washington, DC 20052 USA
关键词
Box-Cox transformation; power normal; skewness; uncertainty analysis; quantiles; lognormal;
D O I
10.1016/j.spl.2005.10.036
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Box-Cox transformation system produces the power normal (PN) family, whose members include normal and lognormal distributions. We study the moments of PIN and obtain expressions for its mean and variance. The quantile functions and a quantile measure of skewness are discussed to show that the PN family is ordered with respect to the transformation parameter. Chebyshev-Hermite polynomials are used to show that the correlation coefficient is smaller in the PN scale than the original scale. We use the Frechet bounds to obtain expressions for the lower and upper bounds of the correlation coefficient. A numerical routine is used to compute the bounds. The transformation parameter of the PN family is used to investigate the effects of model uncertainty on the up per quantile estimates. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:764 / 772
页数:9
相关论文
共 50 条
  • [1] Power-normal distribution
    Kundu, Debasis
    Gupta, Rameshwar D.
    [J]. STATISTICS, 2013, 47 (01) : 110 - 125
  • [2] A Box-Cox normal model for response times
    Entink, R. H. Klein
    van der Linden, W. J.
    Fox, J. -P.
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2009, 62 : 621 - 640
  • [3] Power transformation via multivariate Box-Cox
    Lindsey, Charles
    Sheather, Simon
    [J]. STATA JOURNAL, 2010, 10 (01): : 69 - 81
  • [4] Underlying Assumptions of the Power-Normal Distribution
    Kazushi Maruo
    Shingo Shirahata
    Masashi Goto
    [J]. Behaviormetrika, 2011, 38 (1) : 85 - 95
  • [5] SOME PROPERTIES OF THE POWER-NORMAL DISTRIBUTION
    GOTO, M
    INOUE, T
    [J]. BIOMETRICS, 1982, 38 (04) : 1101 - 1101
  • [6] Box-cox quantile regression and the distribution of firm sizes
    Machado, JAF
    Mata, J
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2000, 15 (03) : 253 - 274
  • [7] Variable selection in the Box-Cox power transformation model
    Chen, Baojiang
    Qin, Jing
    Yuan, Ao
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 216 : 15 - 28
  • [8] Use of Box-Cox transformations
    Wade, A
    Cole, TJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2001, 50 : 403 - 403
  • [9] Percentile estimation based on the power-normal distribution
    Kazushi Maruo
    Masashi Goto
    [J]. Computational Statistics, 2013, 28 : 341 - 356
  • [10] The power-normal distribution: application to forest stands
    Monness, Erik
    [J]. CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 2011, 41 (04): : 707 - 714