Explicit Plancherel Theorems for H(q1, q2) and SL2(F)

被引:0
|
作者
Kutzko, Philip [1 ]
Morris, Lawrence [2 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52240 USA
[2] Clark Univ, Dept Math, Worcester, MA 01610 USA
关键词
Hecke algebra; C*-algebra; Plancherel measure; type; reduced dual;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For each pair q1 >= q2 >= 1 of real numbers, the authors define a complex algebra (with identity) H = H(q1, q2), an associated involutive Banach algebra A = A(q1, q2) and its associated enveloping C*-algebra C*(A), and a quotient C*-algebra C-r*(A). Deformation arguments are used to obtain an explicit Plancherel formula for C-r*(A); the unitary dual of C-r*(A) is explicitly described, as is the unitary dual of C*(A). These results, together with the theory of types, are used to obtain the Plancherel measure for the group SL2(F), where F is a complete non archimedean local field with arbitrary residual characteristic p. This includes an explicit description of the reduced dual. The methods, but not the results, are independent of p.
引用
收藏
页码:435 / 467
页数:33
相关论文
共 50 条
  • [1] 'To Be, or Not To Be' Hamlet Q1, Q2 and Montaigne
    Frampton, Saul
    [J]. CRITICAL SURVEY, 2019, 31 (1-2) : 101 - 112
  • [2] Thermodynamics of the critical RSOS(q1, q2; q) model
    Doikou, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (02): : 329 - 343
  • [3] Status Quo:Q2 Will Be Better Than Q1
    Zhao Zihan
    [J]. China Textile, 2014, (08) : 14 - 15
  • [4] MINIMA OF FUNCTIONS ON (q1, q2)-QUASIMETRIC SPACES
    Sengupta, R.
    Zhukovskiy, S. E.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2019, 10 (02): : 84 - 92
  • [5] COMPLETENESS THEOREM IN (q1, q2)-QUASIMETRIC SPACES
    Greshnov, Alexandr Valer'yevich
    Ivanovich, Zhukov Roman
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 2090 - 2097
  • [6] REPRESENTATIONS OF THE TWO-FOLD CENTRAL EXTENSION OF SL2(Q2)
    Loke, Hung Yean
    Savin, Gordan
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2010, 247 (02) : 435 - 454
  • [7] Theory of (q1, q2)-quasimetric spaces and coincidence points
    A. V. Arutyunov
    A. V. Greshnov
    [J]. Doklady Mathematics, 2016, 94 : 434 - 437
  • [8] Absorption intensity of the Q1(0)+Q1(0) and Q1(0)+Q2(0) double vibrational transitions in solid parahydrogen
    Hinde, RJ
    [J]. PHYSICAL REVIEW B, 2000, 61 (17): : 11451 - 11453
  • [9] On two-generator subgroups in SL2(Z), SL2(Q), and SL2(R)
    Chorna, Anastasiia
    Geller, Katherine
    Shpilrain, Vladimir
    [J]. JOURNAL OF ALGEBRA, 2017, 478 : 367 - 381
  • [10] The third homology of SL2(Q)
    Hutchinson, Kevin
    [J]. JOURNAL OF ALGEBRA, 2021, 570 : 366 - 396