Prediction of MGMT Methylation Status of Glioblastoma Using Radiomics and Latent Space Shape Features

被引:3
|
作者
Palsson, Sveinn [1 ]
Cerri, Stefano [1 ]
Van Leemput, Koen [1 ,2 ]
机构
[1] Tech Univ Denmark, Dept Hlth Technol, Lyngby, Denmark
[2] Harvard Med Sch, Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02115 USA
关键词
MGMT prediction; Radiomics; Deep learning; Glioblastoma; Variational autoencoder; TEMOZOLOMIDE; SURVIVAL; EORTC;
D O I
10.1007/978-3-031-09002-8_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a method for predicting the status of MGMT promoter methylation in high-grade gliomas. From the available MR images, we segment the tumor using deep convolutional neural networks and extract both radiomic features and shape features learned by a variational autoencoder. We implemented a standard machine learning workflow to obtain predictions, consisting of feature selection followed by training of a random forest classification model. We trained and evaluated our method on the RSNA-ASNR-MICCAI BraTS 2021 challenge dataset and submitted our predictions to the challenge.
引用
收藏
页码:222 / 231
页数:10
相关论文
共 50 条
  • [1] Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: A multicentre study
    Zhi-Cheng Li
    Hongmin Bai
    Qiuchang Sun
    Qihua Li
    Lei Liu
    Yan Zou
    Yinsheng Chen
    Chaofeng Liang
    Hairong Zheng
    European Radiology, 2018, 28 : 3640 - 3650
  • [2] Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: A multicentre study
    Li, Zhi-Cheng
    Bai, Hongmin
    Sun, Qiuchang
    Li, Qihua
    Liu, Lei
    Zou, Yan
    Chen, Yinsheng
    Liang, Chaofeng
    Zheng, Hairong
    EUROPEAN RADIOLOGY, 2018, 28 (09) : 3640 - 3650
  • [3] RADIOMICS OF GLIOBLASTOMA FOR PREDICTING MGMT PROMOTOR METHYLATION STATUS AND PROGNOSIS
    Sasaki, Takahiro
    Kinoshita, Manabu
    Fujita, Koji
    Arita, Hideyuki
    Uda, Takehiro
    Tsuyuguchi, Hisahiro
    Hayashi, Nobihude
    Fukai, Junya
    Uematsu, Yuji
    Mori, Kanji
    Okita, Yoshiko
    Nonaka, Masahiro
    Moriuchi, Syusuke
    Hashizume, Rintaro
    Nakao, Naoyuki
    Kanemura, Yonehiro
    NEURO-ONCOLOGY, 2018, 20 : 192 - 192
  • [4] Improving MGMT methylation status prediction of glioblastoma through optimizing radiomics features using genetic algorithm-based machine learning approach
    Duyen Thi Do
    Ming-Ren Yang
    Luu Ho Thanh Lam
    Nguyen Quoc Khanh Le
    Yu-Wei Wu
    Scientific Reports, 12
  • [5] Improving MGMT methylation status prediction of glioblastoma through optimizing radiomics features using genetic algorithm-based machine learning approach
    Duyen Thi Do
    Yang, Ming-Ren
    Luu Ho Thanh Lam
    Nguyen Quoc Khanh Le
    Wu, Yu-Wei
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [6] Radiomics signature: A potential biomarker for the prediction of MGMT promoter methylation in glioblastoma
    Xi, Yi-bin
    Guo, Fan
    Xu, Zi-liang
    Li, Chen
    Wei, Wei
    Tian, Ping
    Liu, Ting-ting
    Liu, Lin
    Chen, Gang
    Ye, Jing
    Cheng, Guang
    Cui, Long-biao
    Zhang, Hong-juan
    Qin, Wei
    Yin, Hong
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 47 (05) : 1380 - 1387
  • [7] Radiomics and MGMT promoter methylation for prognostication of newly diagnosed glioblastoma
    Takahiro Sasaki
    Manabu Kinoshita
    Koji Fujita
    Junya Fukai
    Nobuhide Hayashi
    Yuji Uematsu
    Yoshiko Okita
    Masahiro Nonaka
    Shusuke Moriuchi
    Takehiro Uda
    Naohiro Tsuyuguchi
    Hideyuki Arita
    Kanji Mori
    Kenichi Ishibashi
    Koji Takano
    Namiko Nishida
    Tomoko Shofuda
    Ema Yoshioka
    Daisuke Kanematsu
    Yoshinori Kodama
    Masayuki Mano
    Naoyuki Nakao
    Yonehiro Kanemura
    Scientific Reports, 9
  • [8] Radiomics and MGMT promoter methylation for prognostication of newly diagnosed glioblastoma
    Sasaki, Takahiro
    Kinoshita, Manabu
    Fujita, Koji
    Fukai, Junya
    Hayashi, Nobuhide
    Uematsu, Yuji
    Okita, Yoshiko
    Nonaka, Masahiro
    Moriuchi, Shusuke
    Uda, Takehiro
    Tsuyuguchi, Naohiro
    Arita, Hideyuki
    Mori, Kanji
    Ishibashi, Kenichi
    Takano, Koji
    Nishida, Namiko
    Shofuda, Tomoko
    Yoshioka, Ema
    Kanematsu, Daisuke
    Kodama, Yoshinori
    Mano, Masayuki
    Nakao, Naoyuki
    Kanemura, Yonehiro
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [9] Prognostic prediction of glioblastoma by quantitative assessment of the methylation status of the entire MGMT promoter region
    Manabu Kanemoto
    Mitsuaki Shirahata
    Akiyo Nakauma
    Katsumi Nakanishi
    Kazuya Taniguchi
    Yoji Kukita
    Yoshiki Arakawa
    Susumu Miyamoto
    Kikuya Kato
    BMC Cancer, 14
  • [10] Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma
    Kanas, Vasileios G.
    Zacharaki, Evangelia I.
    Thomas, Ginu A.
    Zinn, Pascal O.
    Megalooikonomou, Vasileios
    Colen, Rivka R.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 140 : 249 - 257