Diagnostics of welding process based on thermovision images using convolutional neural network

被引:4
|
作者
Piecuch, G. [1 ]
Madera, M. [1 ]
Zabinski, T. [1 ]
机构
[1] Rzeszow Univ Technol, Dept Comp & Control Engn, Al Powstancow Warszawy 12, Rzeszow, Poland
关键词
AL-ALLOY; PREDICTION;
D O I
10.1088/1757-899X/710/1/012042
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Arc welding used at automated workstations in large-scale production systems requires continuous assessment of welded joints quality. There are known classical methods and diagnostic systems based on the observation of welding current or arc voltage, while along with the development of deep learning methods, the interest in diagnostics by the use of images is increasing. The article presents results of research conducted for the process of joining two stainless steel materials (AISI 304 and AISI 316L) of various thicknesses by means of a fillet weld, aimed at developing a method of diagnosing the welding process using a convolutional neural network. Infrared images recorded using two thermovision cameras mounted on a test stand were used to diagnose the process. EWM Tetrix 351 welding machine operating in TIG technology was used as an executive element. Welds were made at different currents and arc welding voltages, as well as at different welding speeds, which had a direct impact on its quality. The solution for binary classification of welded joints (correct or incorrect) with accuracy above 98% was achieved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Classification of Arc Welding Joints Images Based on Convolutional Neural Network
    Zheng, Peng
    Chen, Jiechang
    Ye, Shaofeng
    Ott, Peter
    Wang, Lei
    PROCEEDINGS OF 2018 12TH IEEE INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (ASID), 2018, : 31 - 34
  • [2] Classification of Histopathological Images Using Convolutional Neural Network
    Hatipoglu, Nuh
    Bilgin, Gokhan
    2014 4TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2014, : 295 - 300
  • [3] Object Recognition in Images using Convolutional Neural Network
    Duth, Sudharshan P.
    Raj, Swathi
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INVENTIVE SYSTEMS AND CONTROL (ICISC 2018), 2018, : 718 - 722
  • [4] Classification of Tank Images Using Convolutional Neural Network
    Liu, Ying
    Yu, Yongbin
    Wang, Lin
    Nyima, Tashi
    Zhaxi, Nima
    Huang, Hang
    Deng, Quanxin
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 210 - 214
  • [5] Using convolutional neural network for diabetes mellitus diagnosis based on tongue images
    Wu, Lintai
    Luo, Xiaoling
    Xu, Yong
    JOURNAL OF ENGINEERING-JOE, 2020, 2020 (13): : 635 - 638
  • [6] Classification of retinal images based on convolutional neural network
    El-Hag, Noha A.
    Sedik, Ahmed
    El-Shafai, Walid
    El-Hoseny, Heba M.
    Khalaf, Ashraf A. M.
    El-Fishawy, Adel S.
    Al-Nuaimy, Waleed
    Abd El-Samie, Fathi E.
    El-Banby, Ghada M.
    MICROSCOPY RESEARCH AND TECHNIQUE, 2021, 84 (03) : 394 - 414
  • [7] Automatic detection of welding defects using the convolutional neural network
    Sizyakin, Roman
    Voronin, Viacheslav
    Gapon, Nikolay
    Zelensky, Aleksandr
    Pizurica, Aleksandra
    AUTOMATED VISUAL INSPECTION AND MACHINE VISION III, 2019, 11061
  • [8] Diagnosis of Thyroid Diseases Using SPECT Images Based on Convolutional Neural Network
    Ma, Liyong
    Ma, Chengkuan
    Liu, Yuejun
    Wang, Xugang
    Xie, Wei
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2018, 8 (08) : 1684 - 1689
  • [9] Windows Malware Detector Using Convolutional Neural Network Based on Visualization Images
    Darshan, Shiva S. L.
    Jaidhar, C. D.
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2021, 9 (02) : 1057 - 1069
  • [10] Convolutional neural network based hurricane damage detection using satellite images
    Swapandeep Kaur
    Sheifali Gupta
    Swati Singh
    Deepika Koundal
    Atef Zaguia
    Soft Computing, 2022, 26 : 7831 - 7845