A Prospective Observational Study of Clinical Acceptability of Deep Learning Model for the Automated Segmentation of Organs at Risk for Head and Neck Radiotherapy Treatment Planning

被引:0
|
作者
Lucido, J. [1 ]
DeWees, T. A. [2 ]
Leavitt, T. [3 ]
Anand, A. [4 ]
Beltran, C. [5 ]
Brooke, M. [6 ]
Buroker, J. [7 ]
Foote, R. L. [8 ]
Foss, O. R. [1 ]
Hughes, C. O. [6 ]
Hunzeker, A. [5 ]
Laack, N. N., II [5 ]
Lenz, T. [9 ]
Morigami, M. [6 ]
Moseley, D. J. [5 ]
Patel, Y. [6 ]
Tryggestad, E. J. [5 ]
Wilson, M. Z. [6 ]
Zverovitch, A. [6 ]
Patel, S. H. [10 ]
机构
[1] Mayo Clin, Rochester, MN USA
[2] Mayo Clin, Scottsdale, AZ USA
[3] Mayo Clin, Dept Quantitat Hlth Sci, Scottsdale, AZ USA
[4] Mayo Clin, Dept Radiat Oncol, Phoenix, AZ USA
[5] Mayo Clin, Dept Radiat Oncol, Rochester, MN USA
[6] Google Hlth, Mountain View, CA USA
[7] Mayo Clin Rochester, Rochester, MN USA
[8] Mayo Clin Rochester, Dept Radiat Oncol, Rochester, MN USA
[9] Mayo Clin, Rochester Campus, Rochester, MN USA
[10] Mayo Clin Arizona, Dept Radiat Oncol, Phoenix, AZ USA
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
2267
引用
收藏
页码:E121 / E121
页数:1
相关论文
共 50 条
  • [1] Validation of clinical acceptability of deep-learning-based automated segmentation of organs-at-risk for head-and-neck radiotherapy treatment planning
    Lucido, J. John
    DeWees, Todd A.
    Leavitt, Todd R.
    Anand, Aman
    Beltran, Chris J.
    Brooke, Mark D.
    Buroker, Justine R.
    Foote, Robert L.
    Foss, Olivia R.
    Gleason, Angela M.
    Hodge, Teresa L.
    Hughes, Cian O.
    Hunzeker, Ashley E.
    Laack, Nadia N.
    Lenz, Tamra K.
    Livne, Michelle
    Morigami, Megumi
    Moseley, Douglas J.
    Undahl, Lisa M.
    Patel, Yojan
    Tryggestad, Erik J.
    Walker, Megan Z.
    Zverovitch, Alexei
    Patel, Samir H.
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [2] Deep learning auto-segmentation and automated treatment planning for trismus risk reduction in head and neck cancer radiotherapy
    Thor, Maria
    Iyer, Aditi
    Jiang, Jue
    Apte, Aditya
    Veeraraghavan, Harini
    Allgood, Natasha B.
    Kouri, Jennifer A.
    Zhou, Ying
    LoCastro, Eve
    Elguindi, Sharif
    Hong, Linda
    Hunt, Margie
    Cervino, Laura
    Aristophanous, Michalis
    Zarepisheh, Masoud
    Deasy, Joseph O.
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2021, 19 : 96 - 101
  • [3] Development of a Deep Learning-Based Auto-Segmentation of Organs at Risk for Head and Neck Radiotherapy Planning
    Koo, J.
    Latifi, K.
    Caudell, J. J.
    Jordan, P.
    Shen, S.
    Adamson, P. M.
    Feygelman, V.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 112 (05): : E8 - E8
  • [4] Auto-segmentation of organs at risk for head and neck radiotherapy planning: From atlas-based to deep learning methods
    Vrtovec, Tomaz
    Mocnik, Domen
    Strojan, Primoz
    Pernus, Franjo
    Ibragimov, Bulat
    MEDICAL PHYSICS, 2020, 47 (09) : E929 - E950
  • [5] Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process
    Duan, Jingwei
    Bernard, Mark
    Downes, Laura
    Willows, Brooke
    Feng, Xue
    Mourad, Waleed F.
    St Clair, William
    Chen, Quan
    MEDICAL PHYSICS, 2022, 49 (04) : 2570 - 2581
  • [6] Machine-Learning Based Segmentation of Organs at Risks for Head and Neck Radiotherapy Planning
    Ibragimov, B.
    Pernus, F.
    Strojan, P.
    Xing, L.
    MEDICAL PHYSICS, 2016, 43 (06) : 3883 - 3883
  • [7] Deep learning-based segmentation of head and neck organs at risk on CBCT images with dosimetric assessment for radiotherapy
    Cubero, Lucia
    Hemon, Cedric
    Barateau, Anais
    Castelli, Joel
    de Crevoisier, Renaud
    Acosta, Oscar
    Pascau, Javier
    PHYSICS IN MEDICINE AND BIOLOGY, 2025, 70 (07):
  • [8] Deep-learning-based Detection and Segmentation of Organs at Risk in Head and Neck
    Wu, Xueyu
    Wang, Zhonghua
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 910 - 915
  • [9] PCG-net: feature adaptive deep learning for automated head and neck organs-at-risk segmentation
    Luan, Shunyao
    Wei, Changchao
    Ding, Yi
    Xue, Xudong
    Wei, Wei
    Yu, Xiao
    Wang, Xiao
    Ma, Chi
    Zhu, Benpeng
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [10] Clinical Evaluation of Deep Learning Based Auto Segmentation (DLAS) of Organs at Risk in the Head and Neck Region
    Huang, S.
    Ackerman, C.
    Johnson, C.
    Tsai, P.
    Hu, L.
    Xiong, W.
    Apinorasethkul, C.
    Yu, G.
    Zhai, H.
    Press, R. H.
    Lin, H.
    MEDICAL PHYSICS, 2021, 48 (06)