共 50 条
Evaluating and Optimizing Opportunity Fast-Charging Schedules in Transit Battery Electric Bus Networks
被引:61
|作者:
Abdelwahed, Ayman
[1
]
van den Berg, Pieter L.
[1
]
Brandt, Tobias
[1
]
Collins, John
[2
]
Ketter, Wolfgang
[1
,3
,4
]
机构:
[1] Erasmus Univ, Rotterdam Sch Management, NL-3062 PA Rotterdam, Netherlands
[2] Univ Minnesota, Coll Sci & Engn, Minneapolis, MN 55455 USA
[3] Univ Cologne, Fac Management Econ & Social Sci, Cologne Inst Informat Syst, D-50969 Cologne, Germany
[4] Univ Cologne, Inst Energy Econ, D-50969 Cologne, Germany
基金:
欧盟地平线“2020”;
关键词:
transit electric bus networks;
charging schedule;
mixed integer linear programming;
INFRASTRUCTURE;
ELECTRIFICATION;
FEASIBILITY;
SIMULATION;
D O I:
10.1287/trsc.2020.0982
中图分类号:
C93 [管理学];
O22 [运筹学];
学科分类号:
070105 ;
12 ;
1201 ;
1202 ;
120202 ;
摘要:
Public transport operators (PTOs) increasingly face a challenging problem in switching from conventional diesel to more sustainable battery electric buses (BEBs). In this study, we optimize the opportunity fast-charging schedule of transit BEB networks in order to minimize the charging costs and the impact on the grid. Two mixed-integer linear programming (MILP) formulations that use different discretization approaches are developed and compared. Discrete-Time Optimization (DTO) resembles a time-expanded network that discretizes the time and decisions to equal discrete slots. Discrete-Event Optimization (DEO) discretizes the time and decisions into nonuniform slots based on arrival and departure events in the network. In addition to the DEO's higher practicability, the comparative computational study carried out on the transit-bus network in the city of Rotterdam, Netherlands, shows that the DEO is superior to the DTO in terms of computational performance. To show the potential benefits of the optimal schedule, it is compared with two reference common-sense greedy strategies: First-in-First-Served and Lowest-Charge-Highest-Priority.
引用
收藏
页码:1601 / 1615
页数:15
相关论文