Consensus in Multi-Agent Systems With Second-Order Dynamics and Sampled Data

被引:197
|
作者
Yu, Wenwu [1 ,2 ]
Zhou, Lei [1 ,3 ]
Yu, Xinghuo [2 ,4 ]
Lu, Jinhu [5 ]
Lu, Renquan [6 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
[2] RMIT Univ, Sch Elect & Comp Engn, Melbourne, Vic 3001, Australia
[3] Southeast Univ, Sch Elect Engn, Nanjing 210096, Jiangsu, Peoples R China
[4] Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China
[5] Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[6] Hangzhou Dianzi Univ, Inst Informat & Control, Hangzhou 310018, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Algebraic graph theory; coupling gain; consensus region; multi-agent system; second-order consensus; sampling period; DOUBLE-INTEGRATOR DYNAMICS; SUFFICIENT CONDITIONS; SWITCHING TOPOLOGY; INFORMATION; NETWORKS; LEADER; AGENTS;
D O I
10.1109/TII.2012.2235074
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies second-order consensus in multi-agent systems with sampled position and velocity data. A distributed linear consensus protocol with second-order dynamics is first designed, where both sampled position and velocity data are utilized. A necessary and sufficient condition based on the sampling period, the coupling gains, and the spectra of the Laplacian matrix, is established for reaching consensus of the system in this setting. It is found that second-order consensus in such a multi-agent system can be achieved by appropriately choosing the sampling period determined by a polynomial with order three. In particular, second-order consensus cannot be reached for a sufficiently large sampling period while it can be reached for a sufficiently small one under some conditions. Then, the coupling gains are carefully designed under the given network structure and the sampling period. Furthermore, the consensus regions are characterized for the spectra of the Laplacian matrix. On the other hand, second-order consensus in delayed undirected networks with sampled position and velocity data is then discussed. A necessary and sufficient condition is also given, by which appropriate sampling period can be chosen to achieve consensus in multi-agent systems. Finally, simulation examples are given to verify and illustrate the theoretical analysis.
引用
收藏
页码:2137 / 2146
页数:10
相关论文
共 50 条
  • [1] Consensus for second-order multi-agent systems with position sampled data
    王如生
    高利新
    陈文海
    戴大蒙
    [J]. Chinese Physics B, 2016, 25 (10) : 13 - 23
  • [2] Consensus for second-order multi-agent systems with position sampled data
    Wang, Rusheng
    Gao, Lixin
    Chen, Wenhai
    Dai, Dameng
    [J]. CHINESE PHYSICS B, 2016, 25 (10)
  • [3] Second-order Consensus in Multi-agent Dynamical Systems with Sampled Data
    Yu, Wenwu
    Zhou, Lei
    [J]. PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 6279 - 6284
  • [4] Second-order consensus for directed multi-agent systems with sampled data
    Ma, Qian
    Xu, Shengyuan
    Lewis, Frank L.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2014, 24 (16) : 2560 - 2573
  • [5] Second-order consensus in multi-agent dynamical systems with sampled position data
    Yu, Wenwu
    Zheng, Wei Xing
    Chen, Guanrong
    Ren, Wei
    Cao, Jinde
    [J]. AUTOMATICA, 2011, 47 (07) : 1496 - 1503
  • [6] ON THE GENERAL CONSENSUS PROTOCOL IN MULTI-AGENT NETWORKS WITH SECOND-ORDER DYNAMICS AND SAMPLED DATA
    Wang, Aijuan
    Dong, Tao
    Liao, Xiaofeng
    [J]. ASIAN JOURNAL OF CONTROL, 2016, 18 (05) : 1914 - 1922
  • [7] Asynchronous Consensus of Second-order Multi-agent Systems With Aperiodic Sampled-data
    Zhan, Jingyuan
    Li, Xiang
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 902 - 905
  • [8] Leader-following Consensus in Second-order Multi-agent Systems with Sampled Data
    Gong Qingsong
    Zhao Liying
    Liu Kun
    [J]. PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 1101 - 1106
  • [9] Distributed consensus of second-order multi-agent systems with uniquely sampled position data
    Huang, Na
    Duan, Zhisheng
    [J]. 2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 7079 - 7083
  • [10] Impulsive Consensus of Second Order Multi-Agent Systems with Sampled Data
    Zhang Hua
    Yan Qing
    Wu Quanjun
    Zhou Jin
    [J]. 2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 1305 - 1310