Efficient computation of 3D Morse-Smale complexes and persistent homology using discrete Morse theory

被引:48
|
作者
Guenther, David [1 ]
Reininghaus, Jan [2 ]
Wagner, Hubert [3 ]
Hotz, Ingrid [2 ]
机构
[1] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
[2] Zuse Inst Berlin, D-14165 Berlin, Germany
[3] Jagiellonian Univ, Inst Comp Sci, PL-30348 Krakow, Poland
来源
VISUAL COMPUTER | 2012年 / 28卷 / 10期
关键词
Persistent homology; Morse-Smale complex; Discrete Morse theory; Large data;
D O I
10.1007/s00371-012-0726-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose an efficient algorithm that computes the Morse-Smale complex for 3D gray-scale images. This complex allows for an efficient computation of persistent homology since it is, in general, much smaller than the input data but still contains all necessary information. Our method improves a recently proposed algorithm to extract the Morse-Smale complex in terms of memory consumption and running time. It also allows for a parallel computation of the complex. The computational complexity of the Morse-Smale complex extraction solely depends on the topological complexity of the input data. The persistence is then computed using the Morse-Smale complex by applying an existing algorithm with a good practical running time. We demonstrate that our method allows for the computation of persistent homology for large data on commodity hardware.
引用
收藏
页码:959 / 969
页数:11
相关论文
共 46 条
  • [1] Efficient computation of 3D Morse–Smale complexes and persistent homology using discrete Morse theory
    David Günther
    Jan Reininghaus
    Hubert Wagner
    Ingrid Hotz
    [J]. The Visual Computer, 2012, 28 : 959 - 969
  • [2] Parallel Computation of 3D Morse-Smale Complexes
    Shivashankar, Nithin
    Natarajan, Vijay
    [J]. COMPUTER GRAPHICS FORUM, 2012, 31 (03) : 965 - 974
  • [3] MORSE-SMALE SYSTEMS AND THE HOMOLOGY THEORY
    FELSHTYN, AL
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1982, (09): : 58 - 66
  • [4] The Parallel Computation of Morse-Smale Complexes
    Gyulassy, Attila
    Pascucci, Valerio
    Peterka, Tom
    Ross, Robert
    [J]. 2012 IEEE 26TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2012, : 484 - 495
  • [5] Certified computation of planar Morse-Smale complexes
    Chattopadhyay, Amit
    Vegter, Gert
    Yap, Chee K.
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2017, 78 : 3 - 40
  • [6] GPU Parallel Computation of Morse-Smale Complexes
    Subhash, Varshini
    Pandey, Karran
    Natarajan, Vijay
    [J]. 2020 IEEE VISUALIZATION CONFERENCE - SHORT PAPERS (VIS 2020), 2020, : 36 - 40
  • [7] Parallel Computation of 2D Morse-Smale Complexes
    Shivashankar, Nithin
    Senthilnathan, M.
    Natarajan, Vijay
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012, 18 (10) : 1757 - 1770
  • [8] Cancellation of critical points in 2D and 3D morse and morse-smale complexes
    Comic, Lidija
    De Floriani, Leila
    [J]. DISCRETE GEOMETRY FOR COMPUTER IMAGERY, PROCEEDINGS, 2008, 4992 : 117 - +
  • [9] Robust computation of Morse-Smale complexes of bilinear functions
    Norgard, Gregory
    Bremer, Peer-Timo
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2013, 30 (06) : 577 - 587
  • [10] Morse Theory for Filtrations and Efficient Computation of Persistent Homology
    Konstantin Mischaikow
    Vidit Nanda
    [J]. Discrete & Computational Geometry, 2013, 50 : 330 - 353