Sparse Bayesian Learning for DOA Estimation in MIMO Radar with Unknown Nonuniform Noise

被引:0
|
作者
Wang, Xianpeng [1 ,2 ]
Huang, Mengxing [1 ,2 ]
Bi, Guoan [3 ]
机构
[1] Hainan Univ, State Key Lab Marine Resource Utilizat South Chin, Haikou 570228, Hainan, Peoples R China
[2] Hainan Univ, Coll Informat Sci & Technol, Haikou 570228, Hainan, Peoples R China
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
MIMO radar; direction of arrival estimation; sparse Bayesian learning; expectation-maximization algorithm; nonuniform noise; MAXIMUM-LIKELIHOOD; REPRESENTATION; ESPRIT;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a sparse Bayesian learning framework for DOA estimation in multiple input multiple output (MIMO) radar is proposed with unknown nonuniform noise. In the proposed method, the redundant elements of MIMO radar can be eliminated by using the reduced dimensional (RD) transformation. Then a sparse Bayesian model of covariance vector is formulated by assuming that the prior source power is independent zero-mean Gaussian distributed with hyperparameters for its unknown variance. The hyperparameters and nonuniform noise variances are estimated by utilizing the expectation-maximization (EM) algorithm and least squares (LS) criterion, respectively. Finally, the spectrum of hyperparameters is used to estimate the coarse DOA, and a high-precision DOA estimation is achieved by using a refined 1-D searching procedure based on the reconstruction result. Simulation results have demonstrated that the proposed method can work well with different nonuniform noise and achieve better performance.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Robust DOA Estimation for MIMO Radar in Unknown Nonuniform Noise and Mutual Coupling
    Wang, Xianpeng
    Huang, Mengxing
    Shen, Chong
    Cao, Chunjie
    Zhang, Kun
    Bi, Guoan
    [J]. 2018 IEEE 10TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2018, : 194 - 197
  • [2] Off-Grid DOA Estimation Using Sparse Bayesian Learning in MIMO Radar With Unknown Mutual Coupling
    Chen, Peng
    Cao, Zhenxin
    Chen, Zhimin
    Wang, Xianbin
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (01) : 208 - 220
  • [3] DOA estimation for monostatic MIMO radar using enhanced sparse Bayesian learning
    Wen, Fangqing
    Huang, Dongmei
    Wang, Ke
    Zhang, Lei
    [J]. JOURNAL OF ENGINEERING-JOE, 2018, (05): : 268 - 273
  • [4] DOA and Range Estimation for FDA-MIMO Radar with Sparse Bayesian Learning
    Liu, Qi
    Wang, Xianpeng
    Huang, Mengxing
    Lan, Xiang
    Sun, Lu
    [J]. REMOTE SENSING, 2021, 13 (13)
  • [5] Off-Grid DOA Estimation Using Sparse Bayesian Learning for MIMO Radar under Impulsive Noise
    Ma, Jitong
    Zhang, Jiacheng
    Yang, Zhengyan
    Qiu, Tianshuang
    [J]. SENSORS, 2022, 22 (16)
  • [6] DOD and DOA estimation for MIMO radar based on combined MUSIC and sparse Bayesian learning
    Li, Jianfeng
    He, Yi
    He, Lang
    Zhang, Xiaofei
    [J]. 2019 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM - CHINA (ACES), VOL 1, 2019,
  • [7] DOA estimation using sparse Bayesian learning for colocated MIMO radar with dynamic waveforms
    Liu, Bingfan
    Chen, Baixiao
    Yang, Minglei
    Xu, Hui
    [J]. 2020 IEEE 11TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2020,
  • [8] Real-Valued Sparse DOA Estimation for MIMO Array System Under Unknown Nonuniform Noise
    Dong, Fang
    Shen, Chong
    Zhang, Kun
    Wang, Huafei
    [J]. IEEE ACCESS, 2018, 6 : 52218 - 52226
  • [9] DOA Estimation in Heteroscedastic Noise with sparse Bayesian Learning
    Gerstoft, Peter
    Mecklenhrauker, Christoph E.
    Nannuru, Santosh
    Leus, Geert
    [J]. 2020 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (2020 ACES-MONTEREY), 2020,
  • [10] DOA Estimation in Heteroscedastic Noise with sparse Bayesian Learning
    Gerstoft, Peter
    Mecklenbraeuker, Christoph F.
    Nannuru, Santosh
    Leus, Geert
    [J]. APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2020, 35 (11): : 1439 - 1440