Ensemble Conformalized Quantile Regression for Probabilistic Time Series Forecasting

被引:15
|
作者
Jensen, Vilde [1 ,2 ]
Bianchi, Filippo Maria [3 ,4 ]
Anfinsen, Stian Normann [5 ]
机构
[1] UiT Arctic Univ Norway, Dept Phys & Technol, N-9019 Tromso, Norway
[2] Kongsberg Satellite Serv, N-9011 Tromso, Norway
[3] UiT Arctic Univ Norway, Dept Math & Stat, N-9019 Tromso, Norway
[4] UiT Arctic Univ Norway, NORCE Norwegian Res, N-9019 Tromso, Norway
[5] UiT Arctic Univ Norway, NORCE Norwegian Res Ctr, Tromso, Norway
关键词
Time series analysis; Probabilistic logic; Predictive models; Forecasting; Ensemble learning; Uncertainty; Medical services; Conformal prediction (CP); deep neural networks (NNs); ensemble learning; heteroscedasticity; Probabilistic forecasting; quantile regression (QR); time series analysis; uncertainty quantification;
D O I
10.1109/TNNLS.2022.3217694
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents a novel probabilistic forecasting method called ensemble conformalized quantile regression (EnCQR). EnCQR constructs distribution-free and approximately marginally valid prediction intervals (PIs), which are suitable for nonstationary and heteroscedastic time series data. EnCQR can be applied on top of a generic forecasting model, including deep learning architectures. EnCQR exploits a bootstrap ensemble estimator, which enables the use of conformal predictors for time series by removing the requirement of data exchangeability. The ensemble learners are implemented as generic machine learning algorithms performing quantile regression (QR), which allow the length of the PIs to adapt to local variability in the data. In the experiments, we predict time series characterized by a different amount of heteroscedasticity. The results demonstrate that EnCQR outperforms models based only on QR or conformal prediction (CP), and it provides sharper, more informative, and valid PIs.
引用
收藏
页码:9014 / 9025
页数:12
相关论文
共 50 条
  • [1] Conformalized Quantile Regression
    Romano, Yaniv
    Patterson, Evan
    Candes, Emmanuel J.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [2] Remaining useful life prediction based on time-series features and conformalized quantile regression
    Mao, Song
    Li, Xiaofeng
    Zhao, Boyang
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [3] Conformalized Fairness via Quantile Regression
    Liu, Meichen
    Ding, Lei
    Yu, Dengdeng
    Liu, Wulong
    Kong, Linglong
    Jiang, Bei
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [4] Conformalized temporal convolutional quantile regression networks for wind power interval forecasting
    Hu, Jianming
    Luo, Qingxi
    Tang, Jingwei
    Heng, Jiani
    Deng, Yuwen
    [J]. ENERGY, 2022, 248
  • [5] Ensemble Deep Learning for Regression and Time Series Forecasting
    Qiu, Xueheng
    Zhang, Le
    Ren, Ye
    Suganthan, P. N.
    Amaratunga, Gehan
    [J]. 2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ENSEMBLE LEARNING (CIEL), 2014, : 21 - 26
  • [6] Integrating Uncertainty Awareness into Conformalized Quantile Regression
    Rossellini, Raphael
    Barber, Rina Foygel
    Willett, Rebecca
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [7] A multi-quantile regression time series model with interquantile lipschitz regularization for wind power probabilistic forecasting
    Ruas, Marcelo
    Street, Alexandre
    Fernandes, Cristiano
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2022, 209
  • [8] Creating extreme weather time series through a quantile regression ensemble
    Herrera, Manuel
    Ramallo-Gonzalez, Alfonso P.
    Eames, Matthew
    Ferreira, Aida A.
    Coley, David A.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2018, 110 : 28 - 37
  • [9] Probabilistic Solar Forecasting Using Quantile Regression Models
    Lauret, Philippe
    David, Mathieu
    Pedro, Hugo T. C.
    [J]. ENERGIES, 2017, 10 (10):
  • [10] Probabilistic energy forecasting using the nearest neighbors quantile filter and quantile regression
    Ordiano, Jorge Angel Gonzalez
    Groell, Lutz
    Mikut, Ralf
    Hagenmeyer, Veit
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2020, 36 (02) : 310 - 323