Automatic Modulation Classification in Time-Varying Channels Based on Deep Learning

被引:6
|
作者
Zhou, Yu [1 ]
Lin, Tian [1 ]
Zhu, Yu [1 ]
机构
[1] Fudan Univ, Dept Commun Sci & Engn, Key Lab Informat Sci Electromagnet Waves MoE, Shanghai 200433, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷 / 08期
基金
中国国家自然科学基金;
关键词
Automatic modulation classification; constellation diagram; time-varying; convolutional neural network; bidirectional long short-term memory network; NEURAL-NETWORKS; RECOGNITION;
D O I
10.1109/ACCESS.2020.3034942
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic modulation classification (AMC) is an important technology in military signal reconnaissance and civilian communications such as cognitive radios. Most of the existing works focused on the AMC in additional white Gaussian noise channels, but the AMC in time-varying wireless channels is more practical and challenging. In this article, we investigate the AMC in time-varying channels by using the deep learning method for high classification accuracy. Specifically, we take the modulation constellation diagram (CD) as the key feature and propose a slotted constellation diagram (slotted-CD) scheme in order to extract the feature of the time-evolution of the CD due to channel variation. We then develop an advanced neural network for modulation classification, where the output sub-images from the slotted-CD feature extractor are first processed separately by a number of parallel convolutional neural networks and then further processed by a recurrent neural network for exploring their time relationship. Experimental results show that the proposed AMC scheme achieves higher classification accuracy in both slow and fast fading channels when compared with the traditional deep learning based AMC schemes. Such performance improvement can be clearly illustrated by visualizing the outputs of the convolutional layers of the classifier. We also show that visualization can help optimize the parameters of the AMC neural networks.
引用
收藏
页码:197508 / 197522
页数:15
相关论文
共 50 条
  • [1] Deep Learning based Automatic Modulation Classification for Varying SNR Environment
    Xie, Xiaojuan
    Ni, Yanqin
    Peng, Shengliang
    Yao, Yu-Dong
    2019 28TH WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC), 2019, : 18 - 22
  • [2] Moment-based modulation classification for Rician time-varying aeronautical channels
    Yin, Liyan
    Xiang, Xin
    Liang, Yuan
    Liu, Kun
    PHYSICAL COMMUNICATION, 2022, 53
  • [3] Deep Learning-Based Symbol Detection for Time-Varying Nonstationary Channels
    Xuantao Lyu
    Wei Feng
    Ning Ge
    Xianbin Wang
    China Communications, 2022, 19 (03) : 158 - 171
  • [4] Deep learning-based symbol detection for time-varying nonstationary channels
    Lyu, Xuantao
    Feng, Wei
    Ge, Ning
    Wang, Xianbin
    CHINA COMMUNICATIONS, 2022, 19 (03) : 158 - 171
  • [5] Deep Learning-Based Automatic Modulation Classification Over MIMO Keyhole Channels
    Dileep, P.
    Singla, Aashvi
    Das, Dibyajyoti
    Bora, Prabin Kumar
    IEEE ACCESS, 2022, 10 : 119566 - 119574
  • [6] Deep Learning based Automatic Signal Modulation Classification
    Lu, Jingyang
    Li, Yi
    Chen, Genshe
    Shen, Dan
    Tian, Xin
    Khanh Pham
    SENSORS AND SYSTEMS FOR SPACE APPLICATIONS XII, 2019, 11017
  • [7] Automatic Modulation Classification in Deep Learning
    Alnajjar, Khawla A.
    Ghunaim, Sara
    Ansari, Sam
    2022 5TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS, SIGNAL PROCESSING, AND THEIR APPLICATIONS (ICCSPA), 2022,
  • [8] Deep Learning-Based CSI Feedback Approach for Time-Varying Massive MIMO Channels
    Wang, Tianqi
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (02) : 416 - 419
  • [9] Deep Learning-based Implicit CSI Feedback for Time-varying Massive MIMO Channels
    Jiang, Chengyong
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Hou, Xiaolin
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4955 - 4960
  • [10] Adversarial Transfer Learning for Deep Learning Based Automatic Modulation Classification
    Bu, Ke
    He, Yuan
    Jing, Xiaojun
    Han, Jindong
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 880 - 884